Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

3.算法代码实现:

const int  MAXINT = ;
const int MAXNUM = ;
int dist[MAXNUM];
int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0)
{
  bool S[MAXNUM]; // 判断是否已存入该点到S集合中
int n=MAXNUM;
  for(int i=; i<=n; ++i)
   {
  dist[i] = A[v0][i];
  S[i] = false; // 初始都未用过该点
  if(dist[i] == MAXINT)
  prev[i] = -;
   else
  prev[i] = v0;
  }
  dist[v0] = ;
  S[v0] = true;   
   for(int i=; i<=n; i++)
   {
  int mindist = MAXINT;
  int u = v0;    // 找出当前未使用的点j的dist[j]最小值
   for(int j=; j<=n; ++j)
   if((!S[j]) && dist[j]<mindist)
   {
   u = j; // u保存当前邻接点中距离最小的点的号码
    mindist = dist[j];
   }
  S[u] = true;
  for(int j=; j<=n; j++)
   if((!S[j]) && A[u][j]<MAXINT)
   {
   if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径
   {
  dist[j] = dist[u] + A[u][j]; //更新dist
  prev[j] = u; //记录前驱顶点
   }
   }
  }
}

4.算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

Dijkstra算法(C语言)的更多相关文章

  1. Dijkstra算法 c语言实现

    Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优 ...

  2. Dijkstra算法(一)之 C语言详解

    本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...

  3. 最短路径——dijkstra算法代码(c语言)

    最短路径问题 看了王道的视频,感觉云里雾里的,所以写这个博客来加深理解.(希望能在12点以前写完) 一.总体思想 dijkstra算法的主要思想就是基于贪心,找出从v开始的顶点到各个点的最短路径,做法 ...

  4. 数据结构之Dijkstra算法

    基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求 ...

  5. 最短路径算法之Dijkstra算法(java实现)

    前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...

  6. 迪杰斯特拉算法c语言实现

    /*http://1wangxiaobo@163.com 数据结构C语言版 迪杰斯特拉算法  P189 http://1wangxiaobo@163.com 编译环境:Dev-C++ 4.9.9.2  ...

  7. Cocos2d-x 地图步行实现1:图论Dijkstra算法

    下一节<Cocos2d-x 地图行走的实现2:SPFA算法>: http://blog.csdn.net/stevenkylelee/article/details/38440663 本文 ...

  8. 单源最短路径 dijkstra算法实现

    本文记录一下dijkstra算法的实现,图用邻接矩阵表示,假设图为无向图.而且连通,有向图,不连通图的做法相似. 算法简述: 首先确定"单源"的源.假设是第0个顶点. 维护三个数组 ...

  9. 关于Dijkstra算法

    Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...

随机推荐

  1. Spring笔记一

    什么是Spring spring (由rod johnson创建的一个开源框架) spring是一个开源框架,spring是于2003 年兴起的一个轻量级的java 开发框架,由rod johnson ...

  2. C题:A Water Problem(dp||搜索)

    原题链接 解法一:递归 #include<cstdio> #include<algorithm> using namespace std; long long n,x,y; l ...

  3. Arthur and Brackets

    n<605设计出n对夸号  给出n个条件每个条件为[l,r] 表示第i对夸号右夸号离左夸号的距离,然后夸号的右夸号出现的顺序必须按照给的顺序 出现, 那么如果存在就输出否则输出impossilb ...

  4. C#——JSON操作类简单封装(DataContractJsonSerializer)

    Framework版本:.Net Framework 4 使用DataContractJsonSerializer时,实体请使用注解,格式如下 1.实体使用注解,并且提供get和set的public访 ...

  5. i春秋之荒岛求生write-up

    i春秋之荒岛求生write-up 第一关 这一关的答案是在题目的最后一句加粗的 躺平等死 和 勇敢战斗 中进行选择,结合前文中提到的 如果你想出去,就必须打败他们 自然得出答案是 勇敢战斗 . 第二关 ...

  6. linux及安全《Linux内核设计与实现》第一章——20135227黄晓妍

    <linux内核设计与实现>第一章 第一章Linux内核简介: 1.3操作系统和内核简介 操作系统:系统包含了操作系统和所有运行在它之上的应用程序.操作系统是指整个在系统中负责完成最基本功 ...

  7. p4c-bm安装

    Generates the JSON configuration for the behavioral-model (bmv2).它是用来形成 行为模型BMV2 的 JSON配置 的. Importa ...

  8. SQL——DDL简单语句

    基于MySQL的: status 命令查看MySQL当前信息 show databases; 命令列出所有数据库模式 use test; use命令切换到指定数据库模式 show tables; 列出 ...

  9. [osgearth]通过API创建一个earth模型

    通过API的方式大体需要以下几个步骤: 创建map对象—— 创建影像数据层—— 创建高程数据层—— 将影像数据层以及高程数据层加入到map对象—— 根据前面创建的map对象创建mapNode节点—— ...

  10. JavaScript权威指南--类和模块

    知识要点 每个javascript对象都是一个属性集合,相互之间没有任何联系.在javascript中也可以定义对象的类,让每个对象都共享某些属性,这种“共享”的特性是非常有用的.类的成员或实例都包含 ...