Dijkstra算法(C语言)
Dijkstra算法
1.定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
2.算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
3.算法代码实现:
const int MAXINT = ;
const int MAXNUM = ;
int dist[MAXNUM];
int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0)
{
bool S[MAXNUM]; // 判断是否已存入该点到S集合中
int n=MAXNUM;
for(int i=; i<=n; ++i)
{
dist[i] = A[v0][i];
S[i] = false; // 初始都未用过该点
if(dist[i] == MAXINT)
prev[i] = -;
else
prev[i] = v0;
}
dist[v0] = ;
S[v0] = true;
for(int i=; i<=n; i++)
{
int mindist = MAXINT;
int u = v0; // 找出当前未使用的点j的dist[j]最小值
for(int j=; j<=n; ++j)
if((!S[j]) && dist[j]<mindist)
{
u = j; // u保存当前邻接点中距离最小的点的号码
mindist = dist[j];
}
S[u] = true;
for(int j=; j<=n; j++)
if((!S[j]) && A[u][j]<MAXINT)
{
if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径
{
dist[j] = dist[u] + A[u][j]; //更新dist
prev[j] = u; //记录前驱顶点
}
}
}
}
4.算法实例
先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

Dijkstra算法(C语言)的更多相关文章
- Dijkstra算法 c语言实现
Dijkstra(迪杰斯特拉)算法是典型的最短路径路由算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优 ...
- Dijkstra算法(一)之 C语言详解
本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法 ...
- 最短路径——dijkstra算法代码(c语言)
最短路径问题 看了王道的视频,感觉云里雾里的,所以写这个博客来加深理解.(希望能在12点以前写完) 一.总体思想 dijkstra算法的主要思想就是基于贪心,找出从v开始的顶点到各个点的最短路径,做法 ...
- 数据结构之Dijkstra算法
基本思想 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算). 此外,引进两个集合S和U.S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求 ...
- 最短路径算法之Dijkstra算法(java实现)
前言 Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法.该算法被称为是“贪心算法”的成功典范.本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码. 一.知 ...
- 迪杰斯特拉算法c语言实现
/*http://1wangxiaobo@163.com 数据结构C语言版 迪杰斯特拉算法 P189 http://1wangxiaobo@163.com 编译环境:Dev-C++ 4.9.9.2 ...
- Cocos2d-x 地图步行实现1:图论Dijkstra算法
下一节<Cocos2d-x 地图行走的实现2:SPFA算法>: http://blog.csdn.net/stevenkylelee/article/details/38440663 本文 ...
- 单源最短路径 dijkstra算法实现
本文记录一下dijkstra算法的实现,图用邻接矩阵表示,假设图为无向图.而且连通,有向图,不连通图的做法相似. 算法简述: 首先确定"单源"的源.假设是第0个顶点. 维护三个数组 ...
- 关于Dijkstra算法
Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...
随机推荐
- NodeJS学习笔记六
Symbol简介 ES6引入了一种新的原始数据类型Symbol,表示独一无二的值.它是JavaScript语言的第七种数据类型,前六种是:Undefined.Null.布尔值(Boolean).字符串 ...
- centos6.5/6.6配置java环境以及数据库
配置java环境 一.解压jdk 二.配置环境变量 1.修改修改/etc/profile文件(推荐开发环境使用,因为所有用户shell都有权使用这些环境变量,可能带来环境问题) 在profile末尾加 ...
- esLint参数设置
package.json { "name": "testEsLint", "version": "1.0.0", &qu ...
- POJ 3169 Layout(差分约束+最短路)题解
题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...
- (Matlab)GPU计算简介,及其与CPU计算性能的比较
1.GPU与CPU结构上的对比 2.GPU能加速我的应用程序吗? 3.GPU与CPU在计算效率上的对比 4.利用Matlab进行GPU计算的一般流程 5.GPU计算的硬件.软件配置 5.1 硬件及驱动 ...
- Easy install ryu
参考:Ubuntu14.04安装Ryu控制器 环境:Ubuntu 14.04 64bit 使用pip安装ryu: // dependencies sudo apt-get install Python ...
- lxml.etree去除子节点
去除etree中的某个子节点有两种方法: 1.parentnode.remove(node) 2.etree.strip_elements(html, 'element_name', with_tag ...
- Python中通过多个字符分割(split)字符串的方法--转载
Python中字符串自带的split方法一次只能使用一个字符对字符串进行分割,但是python的正则模块则可以实现多个字符分割 import re re.split('_#|','this_is#a| ...
- vim 安装molokai主题
在.vim文件夹下创建文件夹colors 进入 https://github.com/tomasr/molokai 下载molokai.vim 将其放入colors文件夹下 进入.vimrc中 添加 ...
- Prototype(原型)
意图: 用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象. 适用性: 当要实例化的类是在运行时刻指定时,例如,通过动态装载:或者为了避免创建一个与产品类层次平行的工厂类层次时:或者当一个 ...