点击打开链接

描述
Given three strings, you are to determine whether the third string can be formed by combining the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must stay in its original order.



For example, consider forming "tcraete" from "cat" and "tree":



String A: cat

String B: tree

String C: tcraete



As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming "catrtee" from "cat" and "tree":



String A: cat

String B: tree

String C: catrtee



Finally, notice that it is impossible to form "cttaree" from "cat" and "tree".
输入
The first line of input contains a single positive integer from 1 through 1000. It represents the number of data sets to follow. The processing for each data set is identical. The data sets appear on the following lines, one data set per line.



For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two
strings will have lengths between 1 and 200 characters, inclusive.
输出
For each data set, print:



Data set n: yes



if the third string can be formed from the first two, or



Data set n: no



if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.
样例输入
3
cat tree tcraete
cat tree catrtee
cat tree cttaree
样例输出
Data set 1: yes
Data set 2: yes
Data set 3: no
来源
Pacific Northwest 2004

花了好长时间终于用动态规划的方法把样例输入的结果给弄对,但是提交的时候却是WA,后来看了别人的代码发现好多都是用记忆化搜索来做的

AC代码

源代码

#include <stdio.h>
#include <string.h> int main()
{
int i, j, k, t;
int L1, L2, ok[202][202];
char str1[201], str2[201], str3[402];
/**********************
ok[i][j]为真时表示str1的前i个字符可以和str2的前j个字符
组成str3的前i+j个字符。为假时 表示不能。
***********************/ scanf("%d", &t);
for (i=1; i<=t; i++)
{
scanf("%s %s %s", str1, str2, str3);
memset(ok, 0, sizeof(ok));
L1 = strlen(str1);
L2 = strlen(str2); ok[0][0] = 1;
for (j=1; j<=L1; j++)
{
if (ok[j-1][0] == 1 && str1[j-1] == str3[j-1])
ok[j][0] = 1;
else
break;
}
for (j=1; j<=L2; j++)
{
if (ok[0][j-1] == 1 && str2[j-1] == str3[j-1])
ok[0][j] = 1;
else
break;
}
for (j=1; j<=L1; j++)
{
for (k=1; k<=L2; k++)
{
if (ok[j-1][k]==1 && str1[j-1]==str3[j+k-1] || ok[j][k-1]==1 && str2[k-1]==str3[j+k-1])
ok[j][k] = 1;
}
}
if (ok[L1][L2] == 1)
printf("Data set %d: yes\n", i);
else
printf("Data set %d: no\n", i);
}
}

WA代码

源代码

#include<stdio.h>
#include<string.h>
#include<vector>
#include<algorithm>
#include<iostream> using namespace std;
char strr1[1010];
char strr2[1010];
char strr3[1010];
int maxLen[1010][1010];
int main()
{
int n;
scanf("%d",&n);
for(int w=1; w<=n; w++)
{
scanf("%s %s %s",&strr1,&strr2,&strr3);
int length1=strlen(strr1);
int length2=strlen(strr2);
int length3=strlen(strr3);
int nTmp;
// int i,j,k;
memset(maxLen,0,sizeof(maxLen));
for(int i=0; i<=length1; i++)
{
maxLen[i][0]=0;
}
for(int k=0; k<=length3; k++)
{
maxLen[0][k]=0;
}
for(int i=1; i<=length1; i++)
{
for(int k=1; k<=length3; k++)
{
if(strr1[i-1]==strr3[k-1])
maxLen[i][k]=maxLen[i-1][k-1]+1;
else
maxLen[i][k]=max(maxLen[i-1][k],maxLen[i][k-1]);
}
}
if(maxLen[length1][length3]==length1)
{
memset(maxLen,0,sizeof(maxLen)); for(int j=0; j<length2; j++)
{
maxLen[j][0]=0;
} for(int k=0; k<length3; k++)
{
maxLen[0][k]=0;
} for(int j=1; j<=length2; j++)
{
for(int k=1; k<=length3; k++)
{
if(strr2[j-1]==strr3[k-1])
maxLen[j][k]=maxLen[j-1][k-1]+1;
else
maxLen[j][k]=max(maxLen[j-1][k],maxLen[j][k-1]);
}
}
if(maxLen[length2][length3]==length2)
printf("Data set %d: yes\n",w);
else
printf("Data set %d: no\n",w); }
else
printf("Data set %d: no\n",w);
} return 0;
}

Zipper(动态规划)的更多相关文章

  1. HDU 1501 Zipper 动态规划经典

    Zipper Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  2. 转载:hdu 动态规划题集

    1.Robberies 连接 :http://acm.hdu.edu.cn/showproblem.php?pid=2955     背包;第一次做的时候把概率当做背包(放大100000倍化为整数): ...

  3. poj动态规划列表

    [1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...

  4. POJ 动态规划题目列表

    ]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...

  5. hdu 动态规划(46道题目)倾情奉献~ 【只提供思路与状态转移方程】(转)

    HDU 动态规划(46道题目)倾情奉献~ [只提供思路与状态转移方程] Robberies http://acm.hdu.edu.cn/showproblem.php?pid=2955      背包 ...

  6. soj1010. Zipper

    1010. Zipper Constraints Time Limit: 1 secs, Memory Limit: 32 MB Description Given three strings, yo ...

  7. 【转载】 HDU 动态规划46题【只提供思路与状态转移方程】

    1.Robberies 连接 :http://acm.hdu.edu.cn/showproblem.php?pid=2955      背包;第一次做的时候把概率当做背包(放大100000倍化为整数) ...

  8. HDOJ 1501 Zipper 【简单DP】

    HDOJ 1501 Zipper [简单DP] Problem Description Given three strings, you are to determine whether the th ...

  9. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

随机推荐

  1. Firemonkey Button 颜色

    delphi FMX Firemonkey Button 按钮 颜色 TintColor 颜色 Button1.TintColor:=TAlphaColorRec.Green;

  2. mongoTemplate.aggregate()聚合查询

    一.概述 1. 聚合的表达式 MongoDB中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果.有点类似sql语句中的 count(*). 下表展示了一些聚 ...

  3. $or操作符

    [$or操作符] The $or operator performs a logical OR operation on an array of two or more <expressions ...

  4. Fragment生命周期(转)

    Android在3.0中引入了fragments的概念,主要目的是用在大屏幕设备上--例如平板电脑上,支持更加动态和灵活的UI设计.平板电脑的屏幕要比手机的大得多,有更多的空间来放更多的UI组件,并且 ...

  5. Golang之排序算法

    冒泡排序 package main //冒泡排序 import "fmt" func bsort(a []int) { ; i < len(a); i++ { ; j < ...

  6. [SoapUI]获取Project,Test Suite,Test Case各个级别参数的值

    String testResultPath = testRunner.testCase.testSuite.project.getPropertyValue( "testResultPath ...

  7. pyspider示例代码三:用PyQuery解析页面数据

    本系列文章主要记录和讲解pyspider的示例代码,希望能抛砖引玉.pyspider示例代码官方网站是http://demo.pyspider.org/.上面的示例代码太多,无从下手.因此本人找出一些 ...

  8. jquery.fn.extend() 与 $.jquery 作用及区别

    原文:http://www.cnblogs.com/liu-l/p/3928373.html jQuery.extend()这个方法,主要是用来拓展个全局函数啦,例如$.ajax()这种,要不就是拓展 ...

  9. Google Tango初学者教程

    Getting Started with the Tango Java API In this tutorial, we'll go through setting up your build env ...

  10. (DP)uva 10036 Problem C: Divisibility

    链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88171#problem/F 代码: #include <cstdio> ...