题目描述

给出 $n$ 个数 ,求 $\text{Min}_{x=1}^{\infty}\sum\limits_{i=1}^n(\lfloor\frac {a_i}x\rfloor+a_i\ \text{mod}\ x)$ 。

$n,a_i\le 10^6$ 。


题解

数学

$\text{Min}_{x=1}^{\infty}\sum\limits_{i=1}^n(\lfloor\frac {a_i}x\rfloor+a_i\ \text{mod}\ x)=\sum\limits_{i=1}^na_i-\text{Max}_{x=1}^{a}(x-1)\sum\limits_{i=1}^{n}\lfloor\frac{a_i}x\rfloor$

于是枚举 $x$ ,对于某个 $x$ 我们想要知道分别有多少个 $i$ ,使得 $\lfloor\frac{a_i}x\rfloor=0,1,2,...,\lfloor\frac ai\rfloor$ 。每一个都可以使用前/后缀和求出。

总的时间复杂度 $O(n+\sum\limits_{i=1}^n\frac ai)=O(n+a\log a)$

#include <cstdio>
#include <cctype>
#include <algorithm>
using namespace std;
long long sum[2000010];
inline char nc()
{
static char buf[100000] , *p1 , *p2;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf , 1 , 100000 , stdin) , p1 == p2) ? EOF : *p1 ++ ;
}
inline int read()
{
int ret = 0; char ch = nc();
while(!isdigit(ch)) ch = nc();
while(isdigit(ch)) ret = ((ret + (ret << 2)) << 1) + (ch ^ '0') , ch = nc();
return ret;
}
int main()
{
int n = read() , m = 0 , i , j , x;
long long ans = 0 , mx = 0 , tmp;
for(i = 1 ; i <= n ; i ++ ) x = read() , sum[x] ++ , m = max(m , x) , ans += x;
for(i = m ; ~i ; i -- ) sum[i] += sum[i + 1];
for(i = 2 ; i <= m ; i ++ )
{
tmp = 0;
for(j = 0 ; j <= m ; j += i)
tmp += j / i * (sum[j] - sum[j + i]) * (i - 1);
mx = max(mx , tmp);
}
printf("%lld" , ans - mx);
return 0;
}

【uoj#21】[UR #1]缩进优化 数学的更多相关文章

  1. UOJ_21_【UR #1】缩进优化_数学

    UOJ_21_[UR #1]缩进优化_数学 题面:http://uoj.ac/problem/21 最小化$\sum\limits{i=1}^{n}a[i]/x+a[i]\;mod\;x$ =$\su ...

  2. UOJ#21 【UR #1】缩进优化

    传送门 http://uoj.ac/problem/21 枚举 (调和级数?) $\sum_{i=1}^{n} (a_i / x + a_i \bmod x) =\sum a_i - (\sum_{i ...

  3. 【UOJ#21】【UR#1】缩进优化

    我好弱啊,什么题都做不出来QAQ 原题: 小O是一个热爱短代码的选手.在缩代码方面,他是一位身经百战的老手.世界各地的OJ上,很多题的最短解答排行榜都有他的身影.这令他感到十分愉悦. 最近,他突然发现 ...

  4. ●UOJ 21 缩进优化

    题链: http://uoj.ac/problem/21 题解: ...技巧题吧 先看看题目让求什么: 令$F(x)=\sum_{i=1}^{n}(\lfloor a[i]/x \rfloor +a[ ...

  5. uoj problem 21 缩进优化

    题目: 小O是一个热爱短代码的选手.在缩代码方面,他是一位身经百战的老手.世界各地的OJ上,很多题的最短解答排行榜都有他的身影.这令他感到十分愉悦. 最近,他突然发现,很多时候自己的程序明明看起来比别 ...

  6. uoj21 【UR #1】缩进优化

    题目 题意简介明了,需要找到一个\(T\),最小化 \[\sum_{i=1}^n\left \lfloor \frac{a_i}{T} \right \rfloor+\sum_{i=1}^na_i\% ...

  7. Linux Kernel 4.21已更新:优化AMD 7nm Zen2架构

    导读 AMD 7nm Zen2处理器预计将于明年第一季推出,采用下一代7nm EPYC. Linux Kernel 4.21已经更新,以优化AMD 7nm EPYC Rome(罗马)处理器. AMD ...

  8. Mysql学习总结(38)——21条MySql性能优化经验

    今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我们程序员需要去关注的事情. 当我们去设计数据库表结构,对操作数 ...

  9. UOJ #22 UR #1 外星人

    LINK:#22. UR #1 外星人 给出n个正整数数 一个初值x x要逐个对这些数字取模 问怎样排列使得最终结果最大 使结果最大的方案数又多少种? n<=1000,x<=5000. 考 ...

随机推荐

  1. 20155327 学习基础和C语言基础调查

    20155327 学习基础和C语言基础调查 通过阅读老师推荐的五篇文章之后,其中有几个点引发了我的思考,便是"量变引起质变""循序渐进"以及"坚持&q ...

  2. 关于快速沃尔什变换(FWT)的一些个人理解

    定义 FWT是一种快速完成集合卷积运算的算法. 它可以用于求解类似 $C[i]=\sum\limits_{j⊗k=i}A[j]*B[k]$ 的问题. 其中⊗代表位运算中的|,&,^的其中一种. ...

  3. 【CF960G】Bandit Blues

    [CF960G]Bandit Blues 题面 洛谷 题解 思路和这道题一模一样,这里仅仅阐述优化的方法. 看看答案是什么: \[ Ans=C(a+b-2,a-1)\centerdot s(n-1,a ...

  4. NTP(Network Time Protocol)

    Linux NTP配置详解 (Network Time Protocol) http://www.ntp.org/ Meinberg NTP packages provide a GUI instal ...

  5. hdu6447

    YJJ's Salesman Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  6. win2003系统网络安装——基于linux+pxe+dhcp+tftp+samba+ris

    原文发表于:2010-09-16 转载至cu于:2012-07-21 一.原理简介 PXE(preboot execute environment)工作于Client/Server的网络模式,支持工作 ...

  7. openstack golang sdk使用

    1. go get github.com/gophercloud/gophercloud import ( "github.com/gophercloud/gophercloud" ...

  8. presto 配置mysql.properties异常Database (catalog) must not be specified in JDBC URL for MySQL connector

    在presto 0.210 以后配置mysql.properties的时候,对于jdbc-url属性配置后面要加上对应要链接的database connection-url=jdbc:mysql:// ...

  9. Vue工作原理小结

    本文能帮你做什么?1.了解vue的双向数据绑定原理以及核心代码模块2.缓解好奇心的同时了解如何实现双向绑定为了便于说明原理与实现,本文相关代码主要摘自vue源码, 并进行了简化改造,相对较简陋,并未考 ...

  10. CSS3 使用 calc() 计算高度 vh px

    Viewport    viewport:可视窗口,也就是浏览器.    vw Viewport宽度, 1vw 等于viewport宽度的1%    vh Viewport高度, 1vh 等于view ...