hdu6415 Rikka with Nash Equilibrium (DP)
The first line of each testcase contains three numbers $$$n$$$,$$$m$$$ and $$$K$$$ $$$(1≤n,m≤80,1≤K≤10^9)$$$.
The input guarantees that there are at most $$$3$$$ testcases with max$$$(n,m)>50$$$.
3 3 100
5 5 2333
1170
假设已经给n*m安排了一个位置,那么n*m-1就是剩下的数中最大的,但是他的安放收到限制,不能再让他同时满足行列最大。观察发现,它只有在n*m同行或同列时,它才不是这行或这一列最大的,也就是说n*m-1必须和n*m同行或同列。接下来n*m-2也是同理,必须和n*m或n*m-1其中一个同行或同列。
因此,为了构造合法的矩阵,优先考虑的是当前最大的数,所以应该按照从大到小的顺序来填充。只要保证每个数都与之前的数中的某一个同行同列,那么构造出来的所有矩阵都是合法的。
如果换个角度来看问题就是这样,每次操作都有若干个位置可以选择,而每次给一个数安排一个位置,就相当于把所在的行和列,加入到下一个数的可选位置中。
容易发现,如果选择的位置所在行已经被添加过,那么可选位置只会增加列;如果所在列已经被添加过,那么只增加行;如果都被添加过了,那么这次安排就不会产生新的位置。根据增加的情况不同,可以把矩形划分成若干个区域,在某个区域中的任意位置安放数,增加的个数都是相同的。
为了方便分析,因为在同一区域中安放对最后求方案个数没有影响,可以规定每次只能选择区域左上角的位置。
比如说,第一个数有n*m种选择,但只考虑把它放到(1,1),然后把第一行和第一列加入到可选择的位置;
第二个数有n+m-1种选择,它可以放到与(1,1)相邻的(1,2),或(2,1)
  或  
后面的数以此类推
比较一般的情况:
接下来的问题就是,需要维护的只有三个区域,观察发现,可以用三个指标来表示当前的状态:绿色区域的右下角的坐标(同时也是蓝色区域的左下角,橙色区域的右上角),以及已经在绿色区域填入了多少个数(用绿色区域的大小也能表示当前状态,但前者在状态转移的时候更为直观)。
对于(i, j, z)来说,下一个位置可以填在蓝色区域,橙色区域,绿色区域,对应能转移到的状态就是(i+1, j, z),(i, j+1, z),和(i, j, z+1),其中,蓝色区域的大小为i*(m-j),橙色区域的大小为j*(n-i),绿色区域的大小为(i-1)*(j-1)-z,因此,如果用dp[i][j][z]记录(i, j, z)能产生的方案个数,那么就有dp[i][j][z]= i*(m-j)*dp[i+1][j][z] + j*(n-i)*dp[i][j+1][z]+ ((i-1)*(j-1)-z)*dp[i][j][z+1];
    
   
可以转移到的状态
注意到,一旦第一行或第一列完成填充,那么将不会再产生新的位置,或者换一句话说,所有位置都将变成可选位置,所以对于dp[n][j][z]或dp[i][m][z]而言,要考虑它能产生的方案数,其实就是它还剩下的位置数的阶乘。
   
剩下的位置可以以任意顺序填充
所以有:
dp[n][j][z]=(n*m-n-j+1-z)!
dp[i][m][z]=(n*m-i-m+1-z)!
从dp[n-1][m-1]开始,反向递推就能求出dp[1][1][0]
#include<stdio.h>
#include<memory.h> typedef long long LL;
int n, m;
LL mod;
int fac[];//阶乘打表
int dp[][][ * ];//已经处理到n行 m列 重叠部分填了z个
LL help;
void init() {
memset(dp, , sizeof dp);
fac[] = ;
fac[] = ;
//因为取模每次都在变,所以每次都要打表
for (int t = ; t <= ; t++) {
help = LL(t)*fac[t - ] % mod;
fac[t] = help % mod;
}
//第一列全满的情况
for (int j = ; j <= m; ++j) {
for (int z = ; z <= (n-)*(j-); ++z)
dp[n][j][z] = fac[n*m-n-j+ - z];
}
//第一行全满的情况
for (int i = ; i <= n; ++i) {
for (int z = ; z <=(m-)* ( i - ); ++z)
dp[i][m][z] = fac[n*m-i-m+ - z];
}
//从dp[n-1][m-1]逆序递推
for (int i = n - ; i >= ; --i) {
for (int j = m - ; j >= ; --j) {
for (int z = (i - )*(j - ); z >= ; --z) { help = LL(n-i)*(j)*dp[i + ][j][z] /*下*/+
LL(m-j)*(i)*dp[i][j + ][z] /*右*/+
LL((i-)*(j-)-z)*dp[i][j][z + ] /*内*/;
dp[i][j][z] = help % mod;
}
}
}
} int main() {
int kase;
for (scanf("%d", &kase); kase; kase--) {
scanf("%d %d %lld", &n, &m, &mod);
init();
help = LL(n)*m*dp[][][];
int ans = help%mod;
printf("%d\n", ans);
} }
hdu6415 Rikka with Nash Equilibrium (DP)的更多相关文章
- 杭电多校第九场 HDU6415 Rikka with Nash Equilibrium dp
		
Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K ...
 - hdu-6415 Rikka with Nash Equilibrium  dp计数题
		
http://acm.hdu.edu.cn/showproblem.php?pid=6415 题意:将1~n*m填入一个n*m矩阵 问只有一个顶点的构造方案. 顶点的定义是:某数同时是本行本列的最大值 ...
 - HDU6415 Rikka with Nash Equilibrium
		
HDU6415 Rikka with Nash Equilibrium 找规律 + 大数 由于规律会被取模破坏,所以用了java 找出规律的思路是: 对于一个n*m的矩阵构造,我先考虑n*1的构造,很 ...
 - [hdoj6415 Rikka with Nash Equilibrium][dp]
		
http://acm.hdu.edu.cn/showproblem.php?pid=6415 Rikka with Nash Equilibrium Time Limit: 10000/5000 MS ...
 - HDU - 6415 多校9 Rikka with Nash Equilibrium(纳什均衡+记忆化搜索/dp)
		
Rikka with Nash Equilibrium Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K ...
 - 【杂题总汇】HDU2018多校赛第九场 Rikka with Nash Equilibrium
		
[HDU2018多校赛第九场]Rikka with Nash Equilibrium 又是靠这样一道题擦边恰好和第两百名分数一样~愉快
 - HDU 6415 Rikka with Nash Equilibrium (计数DP)
		
题意:给两个整数n,m,让你使用 1 ~ n*m的所有数,构造一个矩阵n*m的矩阵,此矩阵满足:只有一个元素在它的此行和此列中都是最大的,求有多种方式. 析:根据题意,可以知道那个元素一定是 n * ...
 - 三十分钟理解博弈论“纳什均衡” -- Nash Equilibrium
		
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 纳什均衡(或者纳什平衡),Nash ...
 - HDU 6092 17多校5 Rikka with Subset(dp+思维)
		
Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...
 
随机推荐
- Firefox+Burpsuite抓包配置(可抓取https)
			
0x00 以前一直用的是火狐的autoproxy代理插件配合burpsuite抓包 但是最近经常碰到开了代理却抓不到包的情况 就换了Chrome的SwitchyOmega插件抓包 但是火狐不能抓包的问 ...
 - 杂谈001:晨曦Dawn的重新连接
			
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 摘要: 我是晨曦,好久没有关注过我的博客了,整天都在乱糟糟的忙,叙述一下我消失的这段时间,然后我准备做几个专题 ...
 - golang 单元测试
			
单元测试是质量保证十分重要的一环,好的单元测试不仅能及时地发现问题,更能够方便地调试,提高生产效率.所以很多人认为写单元测试是需要额外的时间,会降低生产效率,是对单元测试最大的偏见和误解. go 语言 ...
 - 一步步带你配置IIS(包括错误分析)
			
今天趁着工作中的问题一下子来解决IIS配置 发布网站:点击VS发布网站 第一步:新建配置文件(我取名为webSite) : 第二步:选择发布方法并且选择把文件发布到哪里(比喻在D盘创建一个文件夹web ...
 - Base64编码后通过Url传值
			
Base64编码简介 Base编码使用"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",再加上补 ...
 - HCIE理论-IPV6
			
ipv4与ipv6的对比 IPv4 :32 bit 点分十进制 192.168.1.1 2^32=42.9亿 ipv4地址不足IPv6 :128 bit 十六进制 2^128 冒号分十六进制ipv4 ...
 - python全栈开发-面向对象-进阶
			
python_day_18 1,面向对象的三大特性是什么?继承,多态,封装2,什么是面向对象的新式类?什么是经典类?凡是继承object类都是新式类.凡是不继承object类都是经典类.3,面向对象为 ...
 - OKHttp使用demo(证书过滤,证书导入,代理访问,文件上传)
			
此demo需要引入okhttp-3.4.1.jar 和 okio-1.9.0.jar(这两个包需要jdk1.7以上的环境) 对应pom文件是: <dependency> <group ...
 - MapReduce和yarn
			
1.Mapreduce是什么? Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用户编写的业务逻辑代码和自带默 ...
 - 剑指 Offer——和为 S 的连续正数序列
			
1. 题目 2. 解答 定义两个指针,刚开始分别指向 1 和 2,求出位于这两个指针之间的元素和.如果和大于 S,前面的指针向后移直到和不大于 S 为止:反之,如果和等于 S,则此时两个指针之间的元素 ...