51nod求助
求助dalao们,51nod1170实在是不会了,有没有大佬讲一下,有兴趣的可以告诉我,我提供AC代码。
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Numerics; namespace Problem51Nod
{
class Program
{
public static void Main(String[] args)
{
//BigInteger m = BigInteger.Pow(5, 143) - 1;
//BigInteger n = BigInteger.Pow(2, 331) + 1;
//int k = 100;
BigInteger m = BigInteger.Parse(Console.ReadLine());
BigInteger n = BigInteger.Parse(Console.ReadLine());
int k = Convert.ToInt32(Console.ReadLine()); //Stopwatch timer = new Stopwatch();
//timer.Start();
Console.WriteLine(Cmn(m, n, k));
//timer.Stop();
//Console.WriteLine(timer.Elapsed);
} static BigInteger[][] PowerTable = new BigInteger[][];
static List<BigInteger[][]>[] PreTable = new List<BigInteger[][]>[];
static BigInteger[,] CMatrix; static void InitCMatrix(int l)
{
CMatrix = new BigInteger[l + , l + ];
for (int i = ; i <= l; i++)
CMatrix[i, ] = CMatrix[i, i] = ; for (int i = ; i <= l; i++)
for (int j = ; j * <= i; j++)
CMatrix[i, j] = CMatrix[i, i - j] = CMatrix[i - , j - ] + CMatrix[i - , j];
} static void InitPowerTab(int l, int p)
{
PowerTable[p] = new BigInteger[l + ];
PowerTable[p][] = ; for (int j = ; j < PowerTable[p].Length; j++)
PowerTable[p][j] = PowerTable[p][j - ] * p;
} static void InitData(int l, BigInteger max, int p)
{
PreTable[p] = new List<BigInteger[][]>();
BigInteger[] pre = MulTo(l, p);
BigInteger[,] cMatrix = new BigInteger[l + , l + ]; for (int i = ; i <= l; i++)
for (int j = ; j <= i; j++)
cMatrix[i, j] = CMatrix[i, j]; int power = ;
for (BigInteger i = p; i <= max; i *= p)
{
BigInteger[][] cTable = new BigInteger[p - ][];
cTable[] = pre;
for (int j = ; j < p; j++)
{
BigInteger[] next = ReplaceWith(cTable[], i * j % PowerTable[p][l], l, p, cMatrix); if (j < p - )
cTable[j] = MulMod(cTable[j - ], next, l, p);
else
pre = MulMod(cTable[j - ], next, l, p);
} PreTable[p].Add(cTable);
power++;
}
} static BigInteger Cmn(BigInteger m, BigInteger n, int l)
{
InitCMatrix(l);
InitPowerTab(l, );
InitPowerTab(l, );
BigInteger up5 = CalP(m, n, , l);
BigInteger up2 = CalP(m, n, , l);
BigInteger mod = ((up5 - up2) + PowerTable[][l]) % PowerTable[][l];
mod = IMod(PowerTable[][l], mod, PowerTable[][l]) * PowerTable[][l] + up2;
return mod;
} static BigInteger CalP(BigInteger m, BigInteger n, int p, int l)
{
BigInteger count = Count(m, p) - Count(n, p) - Count(m - n, p);
if (count > l) return ;
InitData(l, m, p);
BigInteger up = Cal(m, p, l) * PowerTable[p][(int)count];
BigInteger down = Cal(n, p, l);
down *= Cal(m - n, p, l);
down %= PowerTable[p][l];
up = IMod(down, up, PowerTable[p][l]);
return up;
} static BigInteger Count(BigInteger v, BigInteger mod)
{
BigInteger count = ; while (v > )
{
v /= mod;
count += v;
} return count;
} static List<BigInteger> Values = new List<BigInteger>();
static List<int> Mods = new List<int>(); static BigInteger Cal(BigInteger nums, int p, int l)
{
BigInteger numsBak = nums;
Values.Clear();
Mods.Clear(); while (numsBak > )
{
Values.Add(numsBak);
Mods.Add((int)(numsBak % p));
numsBak /= p;
} BigInteger result = ; for (int i = ; i < Values.Count; i++)
{
result *= CalSingle(i, p, l);
result %= PowerTable[p][l];
} return result;
} static BigInteger CalSingle(int cIndex, int p, int l)
{
int len = Mods[cIndex];
BigInteger sum = , last = (Values[cIndex] - len) % PowerTable[p][l];
BigInteger[] pre = new BigInteger[] { };
BigInteger result = ;
cIndex++; for (int i = Mods.Count - ; i >= cIndex; i--)
{
int index = Mods[i]; if (index > )
{
BigInteger modValue = , current = ;
foreach (var item in PreTable[p][i - cIndex][index - ])
{
if (item != )
current = (current + modValue * item) % PowerTable[p][l]; if (sum == || modValue == )
break; modValue = modValue * sum % PowerTable[p][l];
} if (i - cIndex + <= l)
sum = (sum + index * PowerTable[p][i - cIndex + ]) % PowerTable[p][l]; result = (result * current) % PowerTable[p][l];
}
} for (int i = ; i <= len; i++)
{
if (i % p == )
continue; result *= last + i;
result %= PowerTable[p][l];
} return result;
} static BigInteger[] MulTo(int l, int p)
{
BigInteger[] result = new BigInteger[] { }; for (BigInteger i = ; i < p; i++)
{
if (i % p == )
continue; BigInteger[] b = new BigInteger[] { i, };
result = MulMod(result, b, l, p);
} return result;
} static BigInteger[] MulMod(BigInteger[] a, BigInteger[] b, int l, int p)
{
int len = Math.Min(l + , a.Length + b.Length - );
BigInteger[] result = new BigInteger[len]; for (int i = ; i < Math.Min(a.Length, l + ); i++)
{
if (a[i] == )
continue; int upper = Math.Min(b.Length, l - i + );
for (int j = ; j < upper; j++)
result[i + j] += a[i] * b[j];
} int last = ; for (int i = ; i < result.Length; i++)
{
result[i] %= PowerTable[p][l - i];
if (result[i] > )
last = i + ;
} if (last < result.Length)
Array.Resize(ref result, last); return result;
} //2次方算法,考虑大数是3次方 除以大进制的常数
static BigInteger[] ReplaceWith(BigInteger[] source, BigInteger into, int l, int p, BigInteger[,] cMatrix)
{
int len = source.Length;
len = Math.Min(len, l + );
BigInteger[] result = new BigInteger[len];
BigInteger[] power = new BigInteger[len];
power[] = ; for (int i = ; i < len; i++)
power[i] = power[i - ] * into % PowerTable[p][l]; for (int i = ; i < len; i++)
{
if (source[i] == )
continue; for (int j = ; j <= i; j++)
{
if (power[i] == ) continue;
var tmp = power[i - j] * source[i] % PowerTable[p][l - j];
if (tmp == ) continue;
result[j] += tmp * cMatrix[i, j];
}
} for (int i = ; i < result.Length; i++)
result[i] %= PowerTable[p][l - i]; return result;
} public static BigInteger EuclidExtend(BigInteger X, BigInteger Y, out BigInteger A, out BigInteger B)
{
if (Y == ) { A = ; B = ; return X; }
BigInteger quotient = X / Y;
BigInteger gcd = EuclidExtend(Y, X - Y * quotient, out A, out B);
BigInteger Temp = A; A = B; B = Temp - quotient * A;
return gcd;
} public static bool Linear(BigInteger X, BigInteger Y, BigInteger N, out BigInteger xResult, out BigInteger yResult)
{
BigInteger gcd = EuclidExtend(X, Y, out xResult, out yResult);
if (N % gcd != ) { return false; }
xResult = xResult * N / gcd % Y;
xResult = xResult >= ? xResult : xResult + Y;
yResult = yResult * N / gcd % X;
yResult = yResult <= ? yResult : yResult - X;
return true;
} public static BigInteger IMod(BigInteger A, BigInteger B, BigInteger P)
{
BigInteger x, y;
Linear(A, P, B, out x, out y);
return x;
}
}
}
51nod求助的更多相关文章
- 51Nod 算法马拉松15 记一次悲壮而又开心的骗分比赛
OwO 故事的起源大概是zcg前天发现51Nod晚上有场马拉松,然后他就很开心的过去打了 神奇的故事就开始了: 晚上的时候我当时貌似正在写线段树?然后看见zcg一脸激动告诉我第一题有九个点直接输出B就 ...
- 【51Nod 1244】莫比乌斯函数之和
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...
- 51Nod 1268 和为K的组合
51Nod 1268 和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...
- 51Nod 1428 活动安排问题
51Nod 1428 活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...
- 51Nod 1278 相离的圆
51Nod 1278 相离的圆 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 1278 相离的圆 基 ...
- 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...
- 【51Nod 1622】【算法马拉松 19C】集合对
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1622 简单题..直接暴力快速幂 #include<cstdio&g ...
- 【51Nod 1616】【算法马拉松 19B】最小集合
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...
- 【51Nod 1674】【算法马拉松 19A】区间的价值 V2
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1674 对区间分治,统计\([l,r]\)中经过mid的区间的答案. 我的 ...
随机推荐
- Mac系统STF自动化环境搭建及部署踩坑记录
因为公司需要寻找一个免root的自动化测试方案,所以以前做的老方案需要被替代.一阵搜寻找到了这个框架,但是部署起来很是折腾,搞了一下午终于搞定,顺便记录一下过程,有需要的自取. 转载请注明出处:htt ...
- Openwrt之移动硬盘ext3/ext4格式化工具
在给openwrt挂载移动硬盘的时候,最好是ext3/ext4方式,但在windows下苦于无法找到合适的工具进行格式化. 踅摸了半天,终于找到了它:MiniTool Partion Wizard ...
- sqoop安装与简单实用
一,sqoop安装 1.解压源码包 2.配置环境变量 3.在bin目录下的 /bin/configsqoop 注释掉check报错信息 4.配置conf目录下 /conf/sqoop-env.sh 配 ...
- OpenLDAP介绍
首先LDAP是一个轻量级的产品(LightWeight),是一个Directory(D),存取的协议(Access Protocol). 我要着重指出,LDAP是一个数据库,但是又不是一个数据库.说他 ...
- asp.net的forms身份验证 单用户身份验证
asp.net的forms身份验证 单用户身份验证 首先要配置Web.config文件 <system.web> <authentication mode="Forms& ...
- javascript与浏览器学习(一)
待学习………… 20160421 标题:JavaScript中浏览器兼容问题 博客地址:http://www.cnblogs.com/DF-fzh/p/5408241.html 简单 ...
- python处理时间相关的方法(汇总)
记录python处理时间的模块:time模块.datetime模块和calendar模块. python版本:2.7 在介绍模块之前,先说下以下几点: 1.时间通常有这几种表示方式: a.时间戳:通常 ...
- 0429团队项目-Scrum团队成立
Scrum团队成立 团队名称:开拓者 团队目标:努力让每一个小伙伴在学会走路的基础上学会跑. 团队口号:我们要的只是这片天而已. 团队照:正面照+背影照(那就是为什么组名叫开拓者) 5.2 角色分配 ...
- 解决pciss_spc导入提示表空间不存在以及扩展失败的问题
select NAME FROM USER$ ORDER BY NAME ; CREATE USER pciss IDENTIFIED BY pciss ; GRANT DBA TO pciss ; ...
- CentOS 7 U盘安装问题解决
最近期待以久的CentOS 7正式版终于发布了,在家里无聊,所以就打算在我的小Y上安装一下,由于笔记本原来有安装Windows 7 操作系统,考虑使用的需求,所以决定安装双系统: 1. ...