P4721 【模板】分治 FFT

题目背景

也可用多项式求逆解决。

题目描述

给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\dots,f[n-1]\),其中\(f[i]=\sum_{j=1}^if[i-j]g[j]\)

边界为 \(f[0]=1\) 。答案模 \(998244353\) 。

输入输出格式

输入格式:

第一行一个正整数 \(n\) 。

第二行共 \(n−1\) 个非负整数 \(g[1],g[2],\dots,g[n-1]\),用空格隔开。

输出格式:

一行共 \(n\) 个非负整数,表示 \(f[0],f[1],\dots,f[n-1]\)模 \(998244353\) 的值。

说明

\(2\leq n\leq 10^5\)

\(0\leq g[i]<998244353\)


其实就是用了一下\(\text{CDQ}\)分治而已,听说比多项式求逆的应用范围要广一些 ,虽然复杂度是\(O(n\log^2n)\)的。

实现细节

  • 和斜率优化一样先左然后做然后去右边
  • 每次做NTT时注意不要从右半边的\(f\)取值,那边不是0...

Code:

#include <cstdio>
#include <algorithm>
#define ll long long
const int N=(1<<18)+10;
const ll mod=998244353,G=3,Gi=332748118;
#define mul(a,b) a*b%mod
ll qp(ll d,ll k){ll f=1;while(k){if(k&1) f=mul(f,d);d=mul(d,d);k>>=1;}return f;}
ll f[N],g[N],a[N],b[N];
int n,len,L,turn[N];
void NTT(ll *a,int typ)
{
for(int i=0;i<len;i++)
if(i<turn[i])
std::swap(a[i],a[turn[i]]);
for(int le=1;le<len;le<<=1)
{
ll wn=qp(typ?G:Gi,(mod-1)/(le<<1));
for(int p=0;p<len;p+=le<<1)
{
ll w=1;
for(int i=p;i<p+le;i++,w=w*wn%mod)
{
ll tmpx=a[i],tmpy=w*a[i+le]%mod;
a[i]=(tmpx+tmpy)%mod;
a[i+le]=(tmpx-tmpy)%mod;
}
}
}
}
void CDQfft(int l,int r)
{
if(l==r) {(f[l]+=g[l])%=mod;return;}
int mid=l+r>>1;
CDQfft(l,mid);
int m=r+1-l;
len=1,L=-1;
while(len<=m<<1) len<<=1,++L;
for(int i=0;i<len;i++) a[i]=b[i]=0,turn[i]=turn[i>>1]>>1|(i&1)<<L;
for(int i=l;i<=mid;i++) a[i+1-l]=f[i];
for(int i=1;i<=r+1-l;i++) b[i]=g[i];
NTT(a,1),NTT(b,1);
for(int i=0;i<len;i++) a[i]=mul(a[i],b[i]);
NTT(a,0);
ll inv=qp(len,mod-2);
for(int i=mid+1;i<=r;i++) (f[i]+=mul(a[i+1-l],inv))%=mod;
CDQfft(mid+1,r);
}
int main()
{
scanf("%d",&n);--n;
for(int i=1;i<=n;i++) scanf("%lld",g+i);
f[0]=1;
CDQfft(1,n);
for(int i=0;i<=n;i++) printf("%lld ",(f[i]+mod)%mod);
return 0;
}

2018.12.6

洛谷 P4721 【模板】分治 FFT 解题报告的更多相关文章

  1. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  2. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  3. 解题:洛谷4721 [模板]分治FFT

    题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include< ...

  4. 洛谷_Cx的故事_解题报告_第四题70

    1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h>   struct node {     long x,y,c; ...

  5. 洛谷 P2317 [HNOI2005]星际贸易 解题报告

    P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...

  6. 洛谷 P3802 小魔女帕琪 解题报告

    P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...

  7. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  8. 洛谷1303 A*B Problem 解题报告

    洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...

  9. 洛谷 P4319 变化的道路 解题报告

    P4319 变化的道路 题目描述 小 w 和小 c 在 H 国,近年来,随着 H 国的发展,H 国的道路也在不断变化着 根据 H 国的道路法,H 国道路都有一个值 \(w\),表示如果小 w 和小 c ...

随机推荐

  1. JS基础,课堂作业,计算器

    网页内的简单计算器 <script> var a = parseInt(prompt("请输入第一个数字:")); var b = parseInt(prompt(&q ...

  2. 解析build.gradle文件

    Gradle是一个非常先进的项目构建工具,它使用了一种基于Groovy的领域特定语言DSL来声明项目设置,摒弃了传统XML(如Ant和Maven)的各种繁琐配置 项目结构如上图: 1.最外层目录下的b ...

  3. 接口自动化·分享·第二篇·你必须了解的HttpRequest和HttpResponse

    完成一个接口调用其实就是完成了一次http请求,所以你必须要清楚一个http请求的组成. 一次完整的请求包含:请求+响应. 一.HttpRequest请求对象 要调用一个接口,首先要准备的是一个请求对 ...

  4. 445. Cosine Similarity【LintCode java】

    Description Cosine similarity is a measure of similarity between two vectors of an inner product spa ...

  5. 《深入分析Java Web技术内幕》读书笔记之JVM内存管理

    今天看JVM的过程中收获颇丰,但一想到这些学习心得将来可能被遗忘,便一阵恐慌,自觉得以后要开始坚持做读书笔记了. 操作系统层面的内存管理 物理内存是一切内存管理的基础,Java中使用的内存和应用程序的 ...

  6. Spring Bean注册解析(一)

           Spring是通过IoC容器对Bean进行管理的,而Bean的初始化主要分为两个过程:Bean的注册和Bean实例化.Bean的注册主要是指Spring通过读取配置文件获取各个bean的 ...

  7. 1019psp

    1.本周psp: 2.本周进度条: 3.累计进度图(折线图): 4.psp饼状图:

  8. 作业2-MathExam V2.0

    MathExam V2.0 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning 计划 20 50 • ...

  9. Dijkstra、Bellman_Ford、SPFA、Floyd算法复杂度比较

    参考 有空再更新下用c++, 下面用的Java Dijkstra:适用于权值为非负的图的单源最短路径,用斐波那契堆的复杂度O(E+VlgV) BellmanFord:适用于权值有负值的图的单源最短路径 ...

  10. Python安装Numpy,matplotlib库

    <1> Numpy是一款基于python的功能强大的科学计算包.要安装numpy首先你得先安装python. python的安装非常简单,本人安装的是python2.7 具体安装步骤如下: ...