集成学习之Boosting —— AdaBoost原理

集成学习之Boosting —— AdaBoost实现

AdaBoost的一般算法流程

输入: 训练数据集 \(T = \left \{(x_1,y_1), (x_2,y_2), \cdots (x_N,y_N)\right \}\),\(y\in\left\{-1,+1 \right\}\),基学习器\(G_m(x)\),训练轮数M

  1. 初始化权值分布: \(w_i^{(1)} = \frac{1}{N}\:, \;\;\;\; i=1,2,3, \cdots N\)
  2. for m=1 to M:

    (a) 使用带有权值分布的训练集学习得到基学习器\(G_m(x)\):

\[G_m(x) = \mathop{\arg\min}\limits_{G(x)}\sum\limits_{i=1}^Nw_i^{(m)}\mathbb{I}(y_i \neq G(x_i))
\]

\(\qquad\) (b) 计算\(G_m(x)\)在训练集上的误差率:

\[\epsilon_m = \frac{\sum\limits_{i=1}^Nw_i^{(m)}\mathbb{I}(y_i \neq G_m(x_i))}{\sum\limits_{i=1}^Nw_i^{(m)}}
\]

\(\qquad\)(c) 计算\(G_m(x)\)的系数: \(\alpha_m = \frac{1}{2}ln\frac{1-\epsilon_m}{\epsilon_m}\)

\(\qquad\)(d) 更新样本权重分布: \(w_{i}^{(m+1)} = \frac{w_i^{(m)}e^{-y_i\alpha_mG_m(x_i)}}{Z^{(m)}}\; ,\qquad i=1,2,3\cdots N\)

  其中\(Z^{(m)}\)是规范化因子,\(Z^{(m)} = \sum\limits_{i=1}^Nw^{(m)}_ie^{-y_i\alpha_mG_m(x_i)}\),以确保所有的\(w_i^{(m+1)}\)构成一个分布。

3. 输出最终模型: \(G(x) = sign\left[\sum\limits_{m=1}^M\alpha_mG_m(x) \right]\)

  • 另外具体实现了real adaboost, early_stopping,weight_trimming和分步预测 (stage_predict,见完整代码)。
import numpy as np
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.base import clone
from sklearn.metrics import zero_one_loss
import time class AdaBoost(object):
def __init__(self, M, clf, learning_rate=1.0, method="discrete", tol=None, weight_trimming=None):
self.M = M
self.clf = clf
self.learning_rate = learning_rate
self.method = method
self.tol = tol
self.weight_trimming = weight_trimming def fit(self, X, y):
# tol为early_stopping的阈值,如果使用early_stopping,则从训练集中分出验证集
if self.tol is not None:
X, X_val, y, y_val = train_test_split(X, y, random_state=2)
former_loss = 1
count = 0
tol_init = self.tol w = np.array([1 / len(X)] * len(X)) # 初始化权重为1/n
self.clf_total = []
self.alpha_total = [] for m in range(self.M):
classifier = clone(self.clf)
if self.method == "discrete":
if m >= 1 and self.weight_trimming is not None:
# weight_trimming的实现,先将权重排序,计算累积和,再去除权重过小的样本
sort_w = np.sort(w)[::-1]
cum_sum = np.cumsum(sort_w)
percent_w = sort_w[np.where(cum_sum >= self.weight_trimming)][0]
w_fit, X_fit, y_fit = w[w >= percent_w], X[w >= percent_w], y[w >= percent_w]
y_pred = classifier.fit(X_fit, y_fit, sample_weight=w_fit).predict(X) else:
y_pred = classifier.fit(X, y, sample_weight=w).predict(X)
loss = np.zeros(len(X))
loss[y_pred != y] = 1
err = np.sum(w * loss) # 计算带权误差率
alpha = 0.5 * np.log((1 - err) / err) * self.learning_rate # 计算基学习器的系数alpha
w = (w * np.exp(-y * alpha * y_pred)) / np.sum(w * np.exp(-y * alpha * y_pred)) # 更新权重分布 self.alpha_total.append(alpha)
self.clf_total.append(classifier) elif self.method == "real":
if m >= 1 and self.weight_trimming is not None:
sort_w = np.sort(w)[::-1]
cum_sum = np.cumsum(sort_w)
percent_w = sort_w[np.where(cum_sum >= self.weight_trimming)][0]
w_fit, X_fit, y_fit = w[w >= percent_w], X[w >= percent_w], y[w >= percent_w]
y_pred = classifier.fit(X_fit, y_fit, sample_weight=w_fit).predict_proba(X)[:, 1] else:
y_pred = classifier.fit(X, y, sample_weight=w).predict_proba(X)[:, 1]
y_pred = np.clip(y_pred, 1e-15, 1 - 1e-15)
clf = 0.5 * np.log(y_pred / (1 - y_pred)) * self.learning_rate
w = (w * np.exp(-y * clf)) / np.sum(w * np.exp(-y * clf)) self.clf_total.append(classifier) '''early stopping'''
if m % 10 == 0 and m > 300 and self.tol is not None:
if self.method == "discrete":
p = np.array([self.alpha_total[m] * self.clf_total[m].predict(X_val) for m in range(m)])
elif self.method == "real":
p = []
for m in range(m):
ppp = self.clf_total[m].predict_proba(X_val)[:, 1]
ppp = np.clip(ppp, 1e-15, 1 - 1e-15)
p.append(self.learning_rate * 0.5 * np.log(ppp / (1 - ppp)))
p = np.array(p) stage_pred = np.sign(p.sum(axis=0))
later_loss = zero_one_loss(stage_pred, y_val) if later_loss > (former_loss + self.tol):
count += 1
self.tol = self.tol / 2
else:
count = 0
self.tol = tol_init
if count == 2:
self.M = m - 20
print("early stopping in round {}, best round is {}, M = {}".format(m, m - 20, self.M))
break
former_loss = later_loss return self def predict(self, X):
if self.method == "discrete":
pred = np.array([self.alpha_total[m] * self.clf_total[m].predict(X) for m in range(self.M)]) elif self.method == "real":
pred = []
for m in range(self.M):
p = self.clf_total[m].predict_proba(X)[:, 1]
p = np.clip(p, 1e-15, 1 - 1e-15)
pred.append(0.5 * np.log(p / (1 - p))) return np.sign(np.sum(pred, axis=0)) if __name__ == "__main__":
#测试各模型的准确率和耗时
X, y = datasets.make_hastie_10_2(n_samples=20000, random_state=1) # data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) start_time = time.time()
model_discrete = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="discrete", weight_trimming=None)
model_discrete.fit(X_train, y_train)
pred_discrete = model_discrete.predict(X_test)
acc = np.zeros(pred_discrete.shape)
acc[np.where(pred_discrete == y_test)] = 1
accuracy = np.sum(acc) / len(pred_discrete)
print('Discrete Adaboost accuracy: ', accuracy)
print('Discrete Adaboost time: ', '{:.2f}'.format(time.time() - start_time),'\n') start_time = time.time()
model_real = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="real", weight_trimming=None)
model_real.fit(X_train, y_train)
pred_real = model_real.predict(X_test)
acc = np.zeros(pred_real.shape)
acc[np.where(pred_real == y_test)] = 1
accuracy = np.sum(acc) / len(pred_real)
print('Real Adaboost accuracy: ', accuracy)
print("Real Adaboost time: ", '{:.2f}'.format(time.time() - start_time),'\n') start_time = time.time()
model_discrete_weight = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="discrete", weight_trimming=0.995)
model_discrete_weight.fit(X_train, y_train)
pred_discrete_weight = model_discrete_weight.predict(X_test)
acc = np.zeros(pred_discrete_weight.shape)
acc[np.where(pred_discrete_weight == y_test)] = 1
accuracy = np.sum(acc) / len(pred_discrete_weight)
print('Discrete Adaboost(weight_trimming 0.995) accuracy: ', accuracy)
print('Discrete Adaboost(weight_trimming 0.995) time: ', '{:.2f}'.format(time.time() - start_time),'\n') start_time = time.time()
mdoel_real_weight = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="real", weight_trimming=0.999)
mdoel_real_weight.fit(X_train, y_train)
pred_real_weight = mdoel_real_weight.predict(X_test)
acc = np.zeros(pred_real_weight.shape)
acc[np.where(pred_real_weight == y_test)] = 1
accuracy = np.sum(acc) / len(pred_real_weight)
print('Real Adaboost(weight_trimming 0.999) accuracy: ', accuracy)
print('Real Adaboost(weight_trimming 0.999) time: ', '{:.2f}'.format(time.time() - start_time),'\n') start_time = time.time()
model_discrete = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="discrete", weight_trimming=None, tol=0.0001)
model_discrete.fit(X_train, y_train)
pred_discrete = model_discrete.predict(X_test)
acc = np.zeros(pred_discrete.shape)
acc[np.where(pred_discrete == y_test)] = 1
accuracy = np.sum(acc) / len(pred_discrete)
print('Discrete Adaboost accuracy (early_stopping): ', accuracy)
print('Discrete Adaboost time (early_stopping): ', '{:.2f}'.format(time.time() - start_time),'\n') start_time = time.time()
model_real = AdaBoost(M=2000, clf=DecisionTreeClassifier(max_depth=1, random_state=1), learning_rate=1.0,
method="real", weight_trimming=None, tol=0.0001)
model_real.fit(X_train, y_train)
pred_real = model_real.predict(X_test)
acc = np.zeros(pred_real.shape)
acc[np.where(pred_real == y_test)] = 1
accuracy = np.sum(acc) / len(pred_real)
print('Real Adaboost accuracy (early_stopping): ', accuracy)
print('Discrete Adaboost time (early_stopping): ', '{:.2f}'.format(time.time() - start_time),'\n')

输出结果:

Discrete Adaboost accuracy:  0.954
Discrete Adaboost time: 43.47 Real Adaboost accuracy: 0.9758
Real Adaboost time: 41.15 Discrete Adaboost(weight_trimming 0.995) accuracy: 0.9528
Discrete Adaboost(weight_trimming 0.995) time: 39.58 Real Adaboost(weight_trimming 0.999) accuracy: 0.9768
Real Adaboost(weight_trimming 0.999) time: 25.39 early stopping in round 750, best round is 730, M = 730
Discrete Adaboost accuracy (early_stopping): 0.9268
Discrete Adaboost time (early_stopping): 14.60 early stopping in round 539, best round is 519, M = 519
Real Adaboost accuracy (early_stopping): 0.974
Discrete Adaboost time (early_stopping): 11.64
  • 可以看到,weight_trimming对于Discrete AdaBoost的训练速度无太大提升,而对于Real AdaBoost则较明显,可能原因是Discrete AdaBoost每一轮的权重较分散,而Real AdaBoost的权重集中在少数的样本上。
  • early_stopping分别发生在750和539轮,最后准确率也可以接受。

下两张图显示使用weight_trimming的情况下准确率与正常AdaBoost相差无几 (除了0.95的情况)。

Discrete AdaBoost vs. Real AdaBoost - Overfitting

AdaBoost有一个吸引人的特性,那就是其“不会过拟合”,或者更准确的说法是在训练误差下降到零之后继续训练依然能提高泛化性能。如下图所示,训练10000棵树,Real AdaBoost的训练误差早早下降为零,而测试误差几乎平稳不变。而且可以看到 Real AdaBoost 对比 Discrete AdaBoost 无论是训练速度还是准确率都更胜一筹。

Margin理论可以解释这个现象,认为随着训练轮数的增加,即使训练误差已经至零,对于训练样本预测的margin依然会扩大,这等于会不断提升预测的信心。但过去十几年来学术界一直对该理论存在争议,具体可参阅AdaBoost发明者的论文 [Schapire, Explaining AdaBoost]

Learning Curve

Learning Curve是另一种评估模型的方法,反映随着训练集的增大,训练误差和测试误差的变化情况。通常如果两条曲线比较接近且误差都较大,为欠拟合;如果训练集误差率低,测试集误差率高,二者的曲线会存在较大距离,则为过拟合。

下面来看AdaBoost在上面数据集中的learning curve:

这里总共只选用了5000个数据 (2500训练集 + 2500测试集),因为learning curve的绘制通常需要拟合N个模型 (N为训练样本数),计算量太大。从上图来看Discrete AdaBoost是欠拟合,而Real AdaBoost比较像是过拟合,如果进一步增加数据,Real AdaBoost的测试误差率可能会进一步下降。

完整代码

/

集成学习之Boosting —— AdaBoost实现的更多相关文章

  1. 集成学习之Boosting —— AdaBoost原理

    集成学习大致可分为两大类:Bagging和Boosting.Bagging一般使用强学习器,其个体学习器之间不存在强依赖关系,容易并行.Boosting则使用弱分类器,其个体学习器之间存在强依赖关系, ...

  2. 集成学习之Boosting —— XGBoost

    集成学习之Boosting -- AdaBoost 集成学习之Boosting -- Gradient Boosting 集成学习之Boosting -- XGBoost Gradient Boost ...

  3. 集成学习之Boosting —— Gradient Boosting原理

    集成学习之Boosting -- AdaBoost原理 集成学习之Boosting -- AdaBoost实现 集成学习之Boosting -- Gradient Boosting原理 集成学习之Bo ...

  4. 集成学习二: Boosting

    目录 集成学习二: Boosting 引言 Adaboost Adaboost 算法 前向分步算法 前向分步算法 Boosting Tree 回归树 提升回归树 Gradient Boosting 参 ...

  5. 大白话5分钟带你走进人工智能-第30节集成学习之Boosting方式和Adaboost

    目录 1.前述: 2.Bosting方式介绍: 3.Adaboost例子: 4.adaboost整体流程: 5.待解决问题: 6.解决第一个问题:如何获得不同的g(x): 6.1 我们看下权重与函数的 ...

  6. 集成学习原理:Adaboost

    集成学习通过从大量的特征中挑出最优的特征,并将其转化为对应的弱分类器进行分类使用,从而达到对目标进行分类的目的. 核心思想 它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器), ...

  7. 集成学习之Boosting —— Gradient Boosting实现

    Gradient Boosting的一般算法流程 初始化: \(f_0(x) = \mathop{\arg\min}\limits_\gamma \sum\limits_{i=1}^N L(y_i, ...

  8. 机器学习——集成学习之Boosting

    整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 AdaBoost GB ...

  9. 决策树(中)-集成学习、RF、AdaBoost、Boost Tree、GBDT

    参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读): 1. https://zhuanlan.zhihu.com/p/86263786 2.https://blog.csdn.net/li ...

随机推荐

  1. MVC模式:python案例

    quotes = ('A man is not complete until he is married. Then he is finished.', 'As I said before, I ne ...

  2. 005-spring cache-配置缓存存储

    一.概述 缓存抽象提供了多种存储集成.要使用它们,需要简单地声明一个适当的CacheManager - 一个控制和管理Caches的实体,可用于检索这些实体以进行存储. 1.1.基于JDK Concu ...

  3. http之工作原理

    HTTP协议定义Web客户端如何从Web服务器请求Web页面,以及服务器如何把Web页面传送给客户端.HTTP协议采用了请求/响应模型.客户端向服务器发送一个请求报文,请求报文包含请求的方法.URL. ...

  4. python openpyxl 封装Execl常用操作的方法

    封装Excel操作方法:先装openpyxl:pip install openpyxl==2.4.5(可以指定版本) 封装脚本:#encoding=utf-8 from openpyxl import ...

  5. flex与j2ee的结合(flex+Spring)

    分类: flex spring2012-04-25 02:11 1262人阅读 评论(1) 收藏 举报 flexspringactionscriptjavapropertiesservlet   目录 ...

  6. springboot+mybatis项目自动生成

    springboot_data_access_demo基于rapid,根据自定义模版生成的基于mybatis+mysql的数据库访问示例项目.简单配置数据库信息,配置不同的生成策略生成可以直接运行访问 ...

  7. postman--实现接口自动化测试

    postman使用 开发中经常用postman来测试接口,一个简单的注册接口用postman测试: 接口正常工作只是最基本的要求,经常要评估接口性能,进行压力测试. postman进行简单压力测试 下 ...

  8. PHP中使用OpenSSL下openssl_verify验证签名案例

    使用OpenSSL那么需要先了解一下http://www.cnblogs.com/wt645631686/p/8390936.html <?php //demo $json = '{" ...

  9. bzoj1607 / P2926 [USACO08DEC]拍头Patting Heads

    P2926 [USACO08DEC]拍头Patting Heads 把求约数转化为求倍数. 累计每个数出现的个数,然后枚举倍数累加答案. #include<iostream> #inclu ...

  10. phpstorm2016.1 添加对Drupal的编程支持

    一.前言 phpstorm作为目前对drupal支持最好的开发工具之一,是drupal模块开发的首选工具.今天我就来谈谈最新的phpstorm如何添加对drupal模块的支持. 相关环境:操作系统ub ...