Description

Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there should be enough cash in the piggy-bank to pay everything that needs to be paid.

But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!

Input

The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's weight in grams.

Output

Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.

思路:

1. 完全背包, 且要求恰好装满, dp[0] = 0

2. dp[i][j] 表示前 i 件物品放入容量为 j 的背包的最小价值, dp[i][j] = min(dp[i-1][j-k*w[i]]+k*v[i]])

3. 求 min, 要求初始化为 INF

代码:

#include <iostream>
using namespace std; const int INF = 0X3F3F3F3F;
int E, F, N;
int v[510], w[510];
int dp[10010]; int solve_dp() {
memset(dp, 0x3f, sizeof(dp));
dp[0] = 0;
int V = F-E;
for(int i = 0; i < N; i++) {
for(int j = w[i]; j <= V; j++) {
dp[j] = min(dp[j], dp[j-w[i]]+v[i]);
}
}
return dp[V];
} int main() {
freopen("E:\\Copy\\ACM\\测试用例\\in.txt", "r", stdin);
int tc;
cin >> tc;
while(tc--) {
scanf("%d%d%d", &E, &F, &N);
for(int i = 0; i < N; i++)
scanf("%d%d", &v[i], &w[i]);
// mainfunc
int ans = solve_dp();
if(ans == INF)
printf("This is impossible.\n");
else
printf("The minimum amount of money in the piggy-bank is %d.\n", ans);
}
return 0;
}

  

POJ 1384 Piggy-Bank(完全背包)的更多相关文章

  1. poj 1384 Piggy-Bank(全然背包)

    http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...

  2. POJ 1384 Piggy-Bank (完全背包)

    Piggy-Bank 题目链接: http://acm.hust.edu.cn/vjudge/contest/130510#problem/F Description Before ACM can d ...

  3. poj 1384 Piggy-Bank(完全背包)

    Piggy-Bank Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10830   Accepted: 5275 Descr ...

  4. POJ 1384 Piggy-Bank【完全背包】+【恰好完全装满】(可达性DP)

    题目链接:https://vjudge.net/contest/217847#problem/A 题目大意:   现在有n种硬币,每种硬币有特定的重量cost[i] 克和它对应的价值val[i]. 每 ...

  5. POJ 1745 【0/1 背包】

    题目链接:http://poj.org/problem?id=1745 Divisibility Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  6. POJ 3181 Dollar Dayz(全然背包+简单高精度加法)

    POJ 3181 Dollar Dayz(全然背包+简单高精度加法) id=3181">http://poj.org/problem?id=3181 题意: 给你K种硬币,每种硬币各自 ...

  7. POJ 3211 Washing Clothes(01背包)

    POJ 3211 Washing Clothes(01背包) http://poj.org/problem?id=3211 题意: 有m (1~10)种不同颜色的衣服总共n (1~100)件.Dear ...

  8. POJ 1384 POJ 1384 Piggy-Bank(全然背包)

    链接:http://poj.org/problem?id=1384 Piggy-Bank Time Limit: 1000MS Memory Limit: 10000K Total Submissio ...

  9. POJ 1384 Piggy-Bank (ZOJ 2014 Piggy-Bank) 完全背包

    POJ :http://poj.org/problem?id=1384 ZOJ:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode ...

  10. POJ 1384 Piggy-Bank 背包DP

    所谓的全然背包,就是说物品没有限制数量的. 怎么起个这么intimidating(吓人)的名字? 事实上和一般01背包没多少差别,只是数量能够无穷大,那么就能够利用一个物品累加到总容量结尾就能够了. ...

随机推荐

  1. Django实现任意文件上传(最简单的方法)

    利用Django实现文件上传并且保存到指定路径下,其实并不困难,完全不需要用到django的forms,也不需要django的models,就可以实现,下面开始实现. 第一步:在模板文件中,创建一个f ...

  2. 关于Solr6.0中solrj使用简单例子

    solr6.0的solrJ接口有部分变化,下面列出了简单的使用实例,有需要的朋友可以参考下. package com.ailk.solr6; import java.io.IOException; i ...

  3. fileupload的乱码解决

    解决方法就是这段代码,其中item是fileupload中的FileItem String value = new String(item.getString().getBytes("ISO ...

  4. PowerShell实现基于SharePoint的网站HomePage Auto-Configure Solution

    Home Page Web Parts Auto-Configuration PS:该项目为公司项目,我还是给他的名字屏蔽掉吧,这是我用PowerShell写的一个自动化升级工具,此为三部自动化工具的 ...

  5. __attribute__((weak, alias())))

    参考gcc的reference: 弱符号: 若两个或两个以上全局符号(函数或变量名)名字一样,而其中之一声明为weak symbol(弱符号),则这些全局符号不会引发重定义错误.链接器会忽略弱符号,去 ...

  6. windows server 2008 域控安装

    windows server 2008 域控安装:1.dns安装,安装过程会提示.net frame 3.51安装 3.域控安装 原文:地址 http://wenku.baidu.com/link?u ...

  7. 一、drupal 安装汉化

    下载 Drupal 7: 下载语言包文件:到 http://localize.drupal.org/translate/languages/zh-hans 页面下载对应版本的语言包(.po文件) 安装 ...

  8. 部署zookeeper集群

    1.把zookeeper.tar.gz解压之后,移动到/usr目录下 2.首先要给zookeeper之间的每个节点的ssh设置无密码登陆 3.在zookeeper目录下编辑zoo.cfg,复制zoo_ ...

  9. KBEngine 服务器端-loginapp-协议构建、解析执行详细介绍

    宏宏宏 由于 C++ 是静态语言,不能像 js 一样通过函数名字符串来直接执行函数,所以将 messageId 映射到可执行函数的复杂性大大提升:KBEngine 使用了一系列精巧的「宏」来解决这个问 ...

  10. 如果分配给命令的连接位于本地挂起事务中,ExecuteNonQuery 要求命令拥有事务。命令的 Transaction 属性尚未初始化

    DbConnection dbc = database.CreateConnection(); DbTransaction dbtt = null; try { dbc.Open(); dbtt = ...