题解——洛谷P1962 斐波那契数列(矩阵乘法)
矩阵乘法加速线性递推的典型
大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项
跑的飞快
虽然我也不知道那个矩阵要怎么构造
或许就像我使用了瞪眼法和枚举法
#include <cstdio>
#include <algorithm>
#include <cstring>
#define int long long
using namespace std;
const int MOD = ;
int n;
struct Matrix{
static const int MAXN = ;
int alpha[MAXN][MAXN];
int n,m;
void init(void){
for(int i=;i<MAXN;i++)
for(int j=;j<MAXN;j++)
alpha[i][j]=;
n=m=;
}
void init_f2(void){
n=;m=;
alpha[][]=;
alpha[][]=;
alpha[][]=;
alpha[][]=;
}
void init_f(void){
n=;m=;
alpha[][]=;
alpha[][]=;
}
void init_pow(int x){
for(int i=;i<=x;i++)
alpha[i][i]=;
m=n=x;
}
Matrix operator * (Matrix b){
Matrix c;
c.init();
for(int i=;i<=n;i++)
for(int j=;j<=b.m;j++)
for(int k=;k<=m;k++)
c.alpha[i][j]=(c.alpha[i][j]%MOD+alpha[i][k]*b.alpha[k][j]%MOD)%MOD;
c.n=n;
c.m=b.m;
return c;
}
};
Matrix pow(Matrix a,int p){
Matrix ans;
ans.init();
ans.init_pow(a.n);
while(p){
if(p&)
ans=ans*a;
a=a*a;
p>>=;
}
return ans;
}
signed main(){
scanf("%lld",&n);
Matrix f,f2,ans;
f.init();
f.init_f();
f2.init();
f2.init_f2();
ans=pow(f2,n-);
// for(int i=1;i<=ans.n;i++){
// for(int j=1;j<=ans.m;j++)
// printf("%d ",ans.alpha[i][j]);
// printf("\n");
// }
f=f*ans;
printf("%lld",f.alpha[][]%MOD);
return ;
}
题解——洛谷P1962 斐波那契数列(矩阵乘法)的更多相关文章
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 洛谷P1962 斐波那契数列【矩阵运算】
洛谷P1962 斐波那契数列[矩阵运算] 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) ( ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- 洛谷——P1962 斐波那契数列
P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 ...
- 洛谷P1962 斐波那契数列题解
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- 【洛谷P1962 斐波那契数列】矩阵快速幂+数学推导
来提供两个正确的做法: 斐波那契数列双倍项的做法(附加证明) 矩阵快速幂 一.双倍项做法 在偶然之中,在百度中翻到了有关于斐波那契数列的词条(传送门),那么我们可以发现一个这个规律$ \frac{F_ ...
- 洛谷—— P1962 斐波那契数列
https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f ...
- 洛谷 P1962 斐波那契数列
题目链接:https://www.luogu.org/problemnew/show/P1962 题目大意: 略 分析: 由于数据规模很大,需要用矩阵快速幂来解. 代码如下: #pragma GCC ...
- 洛谷P1962 斐波那契数列
传送门 不难得到状态转移矩阵 然后带进去乱搞 //minamoto #include<iostream> #include<cstdio> #include<cstrin ...
随机推荐
- sitecore系统教程之架构概述
Sitecore体验数据库(xDB)从实时大数据存储库中的所有通道源收集所有客户交互.它连接交互数据,为每个客户创建全面,统一的视图,并使营销人员可以使用数据来管理客户的实时体验. xDB架构非常灵活 ...
- 20155228 实验二 Java面向对象程序设计
20155228 实验二 Java面向对象程序设计 实验内容 1. 初步掌握单元测试和TDD 2. 理解并掌握面向对象三要素:封装.继承.多态 3. 初步掌握UML建模 4. 熟悉S.O.L.I.D原 ...
- 关于 redis、memcache、mongoDB 的对比 转
从以下几个维度,对 redis.memcache.mongoDB 做了对比.1.性能都比较高,性能对我们来说应该都不是瓶颈.总体来讲,TPS 方面 redis 和 memcache 差不多,要大于 m ...
- MyEclipse使用Ant打包项目
本章主要介绍如何使用ant打包发布项目. ant 是一个将软件编译.测试.部署等步骤联系在一起加以自动化的一个工具,大多用于Java环境中的软件开发.在实际软件开发中,有很多地方可以用到ant. 优点 ...
- Properties (25)
1.Properties 没有泛型.也是哈希表集合,无序集合.{a=1,b=2,c=3} 2. 读取文件中的数据,并保存到集合 (Properties方法:stringPropertyName ...
- Linux基础命令---显示登录用户w
w 显示哪些用户登录,并且显示用户在干什么.报头按此顺序显示当前时间.系统运行时间.当前登录用户数以及过去1.5和15分钟的系统平均负载.接着为每个用户显示以下条目:登录名.TTY名称.远程主机.登录 ...
- cookie 和 session 的一些事 中间件
cookie 和 session cookie 1. 保存在浏览器上一组组键值对,服务器让浏览器进行设置. 2. 为什么要用cookie? HTTP协议是无状态.使用cookie保存状态. 3. dj ...
- netperf 网络性能测试
Netperf是一种网络性能的测量工具,主要针对基于TCP或UDP的传输.Netperf根据应用的不同,可以进行不同模式的网络性能测试,即批量数据传输(bulk data transfer)模式和请求 ...
- [转载]C#中使用正则表达式验证电话号码、手机号、身份证号、数字和邮编
原文出处:https://www.cnblogs.com/wuhuisheng/archive/2011/03/23/1992652.html 验证电话号码的主要代码如下: public bool I ...
- linux--- sort,uniq,cut,wc命令
1.sort [-fbMnrtuk] [file or stdin] -f :忽略大小写的差异,例如 A 与 a 视为编码相同: -b :忽略最前面的空格符部分: -M :以月份的名字来排序,例如 J ...