本文转自:https://github.com/betars/Face-Resources

Face-Resources

Following is a growing list of some of the materials I found on the web for research on face recognition algorithm.

Papers

  1. DeepFace.A work from Facebook.
  2. FaceNet.A work from Google.
  3. One Millisecond Face Alignment with an Ensemble of Regression Trees. Dlib implements the algorithm.
  4. DeepID
  5. DeepID2
  6. DeepID3
  7. Learning Face Representation from Scratch
  8. Face Search at Scale: 80 Million Gallery
  9. A Discriminative Feature Learning Approach for Deep Face Recognition

Datasets

  1. CASIA WebFace Database. 10,575 subjects and 494,414 images
  2. Labeled Faces in the Wild.13,000 images and 5749 subjects
  3. Large-scale CelebFaces Attributes (CelebA) Dataset 202,599 images and 10,177 subjects. 5 landmark locations, 40 binary attributes.
  4. MSRA-CFW. 202,792 images and 1,583 subjects.
  5. MegaFace Dataset 1 Million Faces for Recognition at Scale 690,572 unique people
  6. FaceScrub. A Dataset With Over 100,000 Face Images of 530 People.
  7. FDDB.Face Detection and Data Set Benchmark. 5k images.
  8. AFLW.Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization. 25k images.
  9. AFW. Annotated Faces in the Wild. ~1k images. 10.3D Mask Attack Dataset. 76500 frames of 17 persons using Kinect RGBD with eye positions (Sebastien Marcel)
  10. Audio-visual database for face and speaker recognition.Mobile Biometry MOBIO http://www.mobioproject.org/
  11. BANCA face and voice database. Univ of Surrey
  12. Binghampton Univ 3D static and dynamic facial expression database. (Lijun Yin, Peter Gerhardstein and teammates)
  13. The BioID Face Database. BioID group
  14. Biwi 3D Audiovisual Corpus of Affective Communication. 1000 high quality, dynamic 3D scans of faces, recorded while pronouncing a set of English sentences.
  15. Cohn-Kanade AU-Coded Expression Database. 500+ expression sequences of 100+ subjects, coded by activated Action Units (Affect Analysis Group, Univ. of Pittsburgh.
  16. CMU/MIT Frontal Faces. Training set: 2,429 faces, 4,548 non-faces; Test set: 472 faces, 23,573 non-faces.
  17. AT&T Database of Faces 400 faces of 40 people (10 images per people)

Trained Model

  1. openface. Face recognition with Google's FaceNet deep neural network using Torch.
  2. VGG-Face. VGG-Face CNN descriptor. Impressed embedding loss.
  3. SeetaFace Engine. SeetaFace Engine is an open source C++ face recognition engine, which can run on CPU with no third-party dependence.
  4. Caffe-face - Caffe Face is developed for face recognition using deep neural networks.

Tutorial

  1. Deep Learning for Face Recognition. Shiguan Shan, Xiaogang Wang, and Ming yang.

Software

  1. OpenCV. With some trained face detector models.
  2. dlib. Dlib implements a state-of-the-art of face Alignment algorithm.
  3. ccv. With a state-of-the-art frontal face detector
  4. libfacedetection. A binary library for face detection in images.
  5. SeetaFaceEngine. An open source C++ face recognition engine.

Frameworks

  1. Caffe
  2. Torch7
  3. Theano
  4. cuda-convnet
  5. MXNET
  6. Tensorflow
  7. tiny-dnn

Miscellaneous

  1. faceswap Face swapping with Python, dlib, and OpenCV
  2. Facial Keypoints Detection Competition on Kaggle.
  3. An implementation of Face Alignment at 3000fps via Local Binary Features

Created by betars on 27/10/2015.

 

(转) Face-Resources的更多相关文章

  1. Xamarin+Prism开发详解二:Xaml文件如何简单绑定Resources资源文件内容

    我们知道在UWP里面有Resources文件xxx.resx,在Android里面有String.Xml文件等.那跨平台如何统一这些类别不一的资源文件以及Xaml设计文件如何绑定这些资源?应用支持多国 ...

  2. [免费了] SailingEase .NET Resources Tool (.NET 多语言资源编辑器)

    这是我2010年左右,写 Winform IDE (http://www.cnblogs.com/sheng_chao/p/4387249.html)项目时延伸出的一个小项目. 最初是以共享软件的形式 ...

  3. [Android]使用自定义JUnit Rules、annotations和Resources进行单元测试(翻译)

    以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/5795091.html 使用自定义JUnit Rules.ann ...

  4. [Erlang 0122] Erlang Resources 2014年1月~6月资讯合集

    虽然忙,有些事还是要抽时间做; Erlang Resources 小站 2014年1月~6月资讯合集,方便检索.      小站地址: http://site.douban.com/204209/   ...

  5. [Erlang 0114] Erlang Resources 小站 2013年7月~12月资讯合集

    Erlang Resources 小站 2013年7月~12月资讯合集,方便检索.     附 2013上半年盘点: Erlang Resources 小站 2013年1月~6月资讯合集    小站地 ...

  6. sqoop:Failed to download file from http://hdp01:8080/resources//oracle-jdbc-driver.jar due to HTTP error: HTTP Error 404: Not Found

    环境:ambari2.3,centos7,sqoop1.4.6 问题描述:通过ambari安装了sqoop,又添加了oracle驱动配置,如下: 保存配置后,重启sqoop报错:http://hdp0 ...

  7. Resources.Load加载文件返回null的原因

    1.文件夹都要放在Resources目录下 2.加载时photoName不需要扩展名 Texture2D t = Resources.Load<Texture2D>("Loadi ...

  8. 严重: Error starting static Resources java.lang.IllegalArgumentException:

    严重: Error starting static Resources java.lang.IllegalArgumentException: Document base E:\myworkspace ...

  9. (转载)android:android.content.res.Resources$NotFoundException: String resource ID #..

    android.content.res.Resources$NotFoundException: String resource ID #0x0 找不到资源文件ID #0x0 原因分析如下: 遇到这种 ...

  10. Sentiment Analysis resources

    Wikipedia: Sentiment analysis (also known as opinion mining) refers to the use of natural language p ...

随机推荐

  1. hdu5293 lca+dp+树状数组+时间戳

    题意是给了 n 个点的树,会有m条链条 链接两个点,计算出他们没有公共点的最大价值,  公共点时这样计算的只要在他们 lca 这条链上有公共点的就说明他们相交 dp[i]为这个点包含的子树所能得到的最 ...

  2. 20155228 实验二 Java面向对象程序设计

    20155228 实验二 Java面向对象程序设计 实验内容 1. 初步掌握单元测试和TDD 2. 理解并掌握面向对象三要素:封装.继承.多态 3. 初步掌握UML建模 4. 熟悉S.O.L.I.D原 ...

  3. Swift闭包(I) @autoclosure和@escaping的区别

    1. 参考资料 https://www.cnblogs.com/sgxx/p/6209944.html https://www.jianshu.com/p/99ade4feb8c1

  4. HTML转义符

    空格的替代符号有以下几种: 名称 编号 描述   &#; 不断行的空白(1个字符宽度)   &#; 半个空白(1个字符宽度)   &#; 一个空白(2个字符宽度)   & ...

  5. vs实现数据库数据迁移

    public ActionResult About() { List<ChangeData.Models.old.adsinfo> adsinfo_new = new List<Mo ...

  6. linux常用命令:cp 命令

    cp命令用来复制文件或者目录,是Linux系统中最常用的命令之一.一般情况下,shell会设置一个别名,在命令行下复制文件时,如果目标文件已经存在,就会询问是否覆盖,不管你是否使用-i参数.但是如果是 ...

  7. JAVA基础3---JVM内存模型

    Java虚拟机执行Java程序的时候需要使用一定的内存,根据不同的使用场景划分不同的内存区域.有公用的区域随着Java程序的启动而创建:有线程私有的区域依赖线程的启动而创建 JVM内存模型大致可以分为 ...

  8. read 命令详解

    read 命令从标准输入中读取一行,并把输入行的每个字段的值指定给 shell 变量 语法选项 -p read –p “提示语句”,则屏幕就会输出提示语句,等待输入,并将输入存储在REPLY中 -n ...

  9. ELK学习笔记之F5 DNS可视化让DNS运维更安全更高效-F5 ELK可视化方案系列(3)

    0x00 概述 此文力求比较详细的解释DNS可视化所能带来的场景意义,无论是运维.还是DNS安全.建议仔细看完下图之后的大篇文字段落,希望能引发您的一些思考. 在“F5利用Elastic stack( ...

  10. js DOM常见事件

    js事件命名为on+动词 1.onclick事件,点击鼠标时触发,ondbclick双击事件 <h1 onclick="this.innerHTML='点击后文本'"> ...