本文转自:https://github.com/betars/Face-Resources

Face-Resources

Following is a growing list of some of the materials I found on the web for research on face recognition algorithm.

Papers

  1. DeepFace.A work from Facebook.
  2. FaceNet.A work from Google.
  3. One Millisecond Face Alignment with an Ensemble of Regression Trees. Dlib implements the algorithm.
  4. DeepID
  5. DeepID2
  6. DeepID3
  7. Learning Face Representation from Scratch
  8. Face Search at Scale: 80 Million Gallery
  9. A Discriminative Feature Learning Approach for Deep Face Recognition

Datasets

  1. CASIA WebFace Database. 10,575 subjects and 494,414 images
  2. Labeled Faces in the Wild.13,000 images and 5749 subjects
  3. Large-scale CelebFaces Attributes (CelebA) Dataset 202,599 images and 10,177 subjects. 5 landmark locations, 40 binary attributes.
  4. MSRA-CFW. 202,792 images and 1,583 subjects.
  5. MegaFace Dataset 1 Million Faces for Recognition at Scale 690,572 unique people
  6. FaceScrub. A Dataset With Over 100,000 Face Images of 530 People.
  7. FDDB.Face Detection and Data Set Benchmark. 5k images.
  8. AFLW.Annotated Facial Landmarks in the Wild: A Large-scale, Real-world Database for Facial Landmark Localization. 25k images.
  9. AFW. Annotated Faces in the Wild. ~1k images. 10.3D Mask Attack Dataset. 76500 frames of 17 persons using Kinect RGBD with eye positions (Sebastien Marcel)
  10. Audio-visual database for face and speaker recognition.Mobile Biometry MOBIO http://www.mobioproject.org/
  11. BANCA face and voice database. Univ of Surrey
  12. Binghampton Univ 3D static and dynamic facial expression database. (Lijun Yin, Peter Gerhardstein and teammates)
  13. The BioID Face Database. BioID group
  14. Biwi 3D Audiovisual Corpus of Affective Communication. 1000 high quality, dynamic 3D scans of faces, recorded while pronouncing a set of English sentences.
  15. Cohn-Kanade AU-Coded Expression Database. 500+ expression sequences of 100+ subjects, coded by activated Action Units (Affect Analysis Group, Univ. of Pittsburgh.
  16. CMU/MIT Frontal Faces. Training set: 2,429 faces, 4,548 non-faces; Test set: 472 faces, 23,573 non-faces.
  17. AT&T Database of Faces 400 faces of 40 people (10 images per people)

Trained Model

  1. openface. Face recognition with Google's FaceNet deep neural network using Torch.
  2. VGG-Face. VGG-Face CNN descriptor. Impressed embedding loss.
  3. SeetaFace Engine. SeetaFace Engine is an open source C++ face recognition engine, which can run on CPU with no third-party dependence.
  4. Caffe-face - Caffe Face is developed for face recognition using deep neural networks.

Tutorial

  1. Deep Learning for Face Recognition. Shiguan Shan, Xiaogang Wang, and Ming yang.

Software

  1. OpenCV. With some trained face detector models.
  2. dlib. Dlib implements a state-of-the-art of face Alignment algorithm.
  3. ccv. With a state-of-the-art frontal face detector
  4. libfacedetection. A binary library for face detection in images.
  5. SeetaFaceEngine. An open source C++ face recognition engine.

Frameworks

  1. Caffe
  2. Torch7
  3. Theano
  4. cuda-convnet
  5. MXNET
  6. Tensorflow
  7. tiny-dnn

Miscellaneous

  1. faceswap Face swapping with Python, dlib, and OpenCV
  2. Facial Keypoints Detection Competition on Kaggle.
  3. An implementation of Face Alignment at 3000fps via Local Binary Features

Created by betars on 27/10/2015.

 

(转) Face-Resources的更多相关文章

  1. Xamarin+Prism开发详解二:Xaml文件如何简单绑定Resources资源文件内容

    我们知道在UWP里面有Resources文件xxx.resx,在Android里面有String.Xml文件等.那跨平台如何统一这些类别不一的资源文件以及Xaml设计文件如何绑定这些资源?应用支持多国 ...

  2. [免费了] SailingEase .NET Resources Tool (.NET 多语言资源编辑器)

    这是我2010年左右,写 Winform IDE (http://www.cnblogs.com/sheng_chao/p/4387249.html)项目时延伸出的一个小项目. 最初是以共享软件的形式 ...

  3. [Android]使用自定义JUnit Rules、annotations和Resources进行单元测试(翻译)

    以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/5795091.html 使用自定义JUnit Rules.ann ...

  4. [Erlang 0122] Erlang Resources 2014年1月~6月资讯合集

    虽然忙,有些事还是要抽时间做; Erlang Resources 小站 2014年1月~6月资讯合集,方便检索.      小站地址: http://site.douban.com/204209/   ...

  5. [Erlang 0114] Erlang Resources 小站 2013年7月~12月资讯合集

    Erlang Resources 小站 2013年7月~12月资讯合集,方便检索.     附 2013上半年盘点: Erlang Resources 小站 2013年1月~6月资讯合集    小站地 ...

  6. sqoop:Failed to download file from http://hdp01:8080/resources//oracle-jdbc-driver.jar due to HTTP error: HTTP Error 404: Not Found

    环境:ambari2.3,centos7,sqoop1.4.6 问题描述:通过ambari安装了sqoop,又添加了oracle驱动配置,如下: 保存配置后,重启sqoop报错:http://hdp0 ...

  7. Resources.Load加载文件返回null的原因

    1.文件夹都要放在Resources目录下 2.加载时photoName不需要扩展名 Texture2D t = Resources.Load<Texture2D>("Loadi ...

  8. 严重: Error starting static Resources java.lang.IllegalArgumentException:

    严重: Error starting static Resources java.lang.IllegalArgumentException: Document base E:\myworkspace ...

  9. (转载)android:android.content.res.Resources$NotFoundException: String resource ID #..

    android.content.res.Resources$NotFoundException: String resource ID #0x0 找不到资源文件ID #0x0 原因分析如下: 遇到这种 ...

  10. Sentiment Analysis resources

    Wikipedia: Sentiment analysis (also known as opinion mining) refers to the use of natural language p ...

随机推荐

  1. skynet 报错 skynet 服务缺陷 Lua死循环

    我的报错如下: 看起来是skynet中lua死循环,实际上,可能只是本地配置出了问题,比如,我的数据库连接不上了,因为我把别人的配置更新到我本地了,吗,mysql秘密不对 解决办法就是将配置文件中的, ...

  2. xmldecoder漏洞

    https://blog.csdn.net/youanyyou/article/details/78990312

  3. Hive使用pmod函数实现dayofweek函数功能

    dayofweek在hive2.2.0开始支持,低版本的hive原生未提供dayofweek函数(获取一个日期是星期几的方法),所以只有我们自己编写udf函数提供,udf就不说了,在这里给出了一个使用 ...

  4. Win10,Office2013出现“您的组织策略阻止我们为您完成此操作”怎么解决?

    "Windows Registry Editor Version 5.00"这是Windows注册表编辑器5.00版的意思新建一个记事本文件,将以下代码直接复制到新建的文本文件中: ...

  5. ref 参数与out参数

    变量作为参数传给方法,同时希望在方法执行完成后对参数,反应到变量上面.就需要用到ref和out这两个参数. ref参数:在 传入前必须先初始化 out参数:不需要做预先的处理

  6. Linux服务器---配置nfs

    配置nfs NFS服务的主要配置文件为/etc/exports./etc/exports文件内容格式: <输出目录> 客户端(选项:访问权限,用户映射,其他) 1.输出目录 输出目录是指N ...

  7. Linux下几种重启Nginx的方式,找出nginx配置文件路径和测试配置文件是否正确

    Linux下几种重启Nginx的方式,找出nginx配置文件路径和测试配置文件是否正确 目录在/etc/ngnix/conf.d下找出nginx配置文件路径和测试配置文件是否正确# /usr/sbin ...

  8. 吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货

    吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货 摘要: 目前,AI技术做出的经济贡献几乎都来自监督学习,也就是学习从A到B,从输入到输出的映射.现在,监督学习.迁移学习.非监督学习. ...

  9. The Little Prince-12/11

    The Little Prince-12/11 最后一段话!!!hha,傻傻的我们...... 成人们对数字情有独钟.如果你为他们介绍一个朋友,他们从不会问你“他的嗓子怎么样?他爱玩什么游戏?他会采集 ...

  10. kivy 笔记

    没有引入App对象,就不会得到一个窗口. kvlanguage用来构建UI界面,这个文件保存成”.kv”. kivy用widget来描述UI元素,lable.layout等都是widget 简单一点的 ...