luogu P3674 小清新人渣的本愿
毒瘤lxl
本质是莫队,关键是怎么处理询问
这里需要开两个bitset(记为\(b1,b2\)),分别存\(x\)和\(n-x\)是否出现
对于询问1,即\(x-y=z\),由于\(y=x-z\),所以要求\(x\)和\(x-z\)同时存在,相当于\(b1\&(b1<<z)\)是否有1,没有就是不存在这种情况
对于询问2,即\(x+y=z\),这里记\(w=n-y\),原式变为\(x+n-w=z\),即\(x-w=z-n\),和情况1类似,相当于要知道\(b1\&(b2>>(n-z))\)是否有1
询问3的话,\(O(\sqrt{n})\)大力枚举约数,判断是否存在即可
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
using namespace std;
const int N=100000+10;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,m,q,sz,mm[N],a[N],b[N];
bitset<N> b1,b2;
bool an[N];
struct qu
{
int o,l,r,x,id;
bool operator < (const qu &bb) const {return mm[l]!=mm[bb.l]?mm[l]<mm[bb.l]:mm[r]<mm[bb.r];}
}qq[N];
int main()
{
n=rd(),q=rd();
sz=(int)sqrt(n);
for(int i=1;i<=n;++i) a[i]=rd(),mm[i]=i/sz;
for(int i=1;i<=q;++i) qq[i].o=rd(),qq[i].l=rd(),qq[i].r=rd(),qq[i].x=rd(),qq[i].id=i;
sort(qq+1,qq+q+1);
for(int i=1,l=1,r=0;i<=q;++i)
{
while(r<qq[i].r)
{
++r;
++b[a[r]];
if(b[a[r]]==1) b1[a[r]]=b2[n-a[r]]=1;
}
while(r>qq[i].r)
{
--b[a[r]];
if(b[a[r]]==0) b1[a[r]]=b2[n-a[r]]=0;
--r;
}
while(l<qq[i].l)
{
--b[a[l]];
if(b[a[l]]==0) b1[a[l]]=b2[n-a[l]]=0;
++l;
}
while(l>qq[i].l)
{
--l;
++b[a[l]];
if(b[a[l]]==1) b1[a[l]]=b2[n-a[l]]=1;
}
int x=qq[i].x;
if(qq[i].o==1) an[qq[i].id]=(b1&(b1<<x)).any();
else if(qq[i].o==2) an[qq[i].id]=(b1&(b2>>(n-x))).any();
else
{
for(int j=1;j*j<=x&&!an[qq[i].id];++j)
if(x%j==0) an[qq[i].id]=(b[j]>0&&b[x/j]>0);
}
}
for(int i=1;i<=q;i++) printf("%s\n",an[i]?"hana":"bi");
return 0;
}
luogu P3674 小清新人渣的本愿的更多相关文章
- 【题解】Luogu P3674 小清新人渣的本愿
原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...
- luogu P3674 小清新人渣的本愿(莫队+bitset)
这题是莫队维护bitset. 然而我并不会bitset以前讲过认为不考就没学 我真的太菜了. 首先维护一个权值的bitset--s. 操作3比较简单,我们可以\(\sqrt{x}\)枚举约数然后判断就 ...
- P3674 小清新人渣的本愿
P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...
- 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]
传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...
- [Luogu 3674]小清新人渣的本愿
Description 题库链接 给你一个序列 \(A\) ,长度为 \(n\) ,有 \(m\) 次操作,每次询问一个区间是否可以 选出两个数它们的差为 \(x\) : 选出两个数它们的和为 \(x ...
- 洛谷P3674 小清新人渣的本愿
题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...
- 洛谷P3674 小清新人渣的本愿(莫队)
传送门 由乃tql…… 然后抄了一波zcy大佬的题解 我们考虑把询问给离线,用莫队做 然后用bitset维护,每一位代表每一个数字是否存在,记为$now1$ 然后再记录一个$now1$的反串$now2 ...
- 洛谷 P3674 小清新人渣的本愿
想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...
- P3674 小清新人渣的本愿 莫队+bitset
ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...
随机推荐
- 一个想休息的线程:JVM到底是怎么处理锁的?怎么不让我阻塞呢?
我是一个线程,生活在JVM(Java虚拟机)中, 这一段日子过得有些无聊,整个世界似乎只有这一个人,天天忙着执行代码,想休息一下都很难. 我听说人类写的代码中有些特殊的地方,叫做临界区,比如synch ...
- XML的基礎結構
1.xml是什麼? xml,Extensible Markup Language,扩展性标识语言,後綴名為.xml. 2.xml有什麼功能? xml功能是傳輸和儲存數據,用於不同的應用和平台數據共享和 ...
- 2.18比赛(T2,T3留坑)
2.18比赛(T2,T3留坑) pdf版题面 pdf版题解 超越一切(ak) [题目描述] 夏洛可得到一个(h+1)×(w+1)的巧克力,这意味着她横着最多可 以切 h 刀,竖着最多可以切 w 刀 她 ...
- ELK--filebeat nginx模块
Nginx模块 该nginx模块解析由Nginx HTTP服务器创建的访问和错误日志 . 当你运行这个模块的时候,它会执行一些任务: 设置日志文件的默认路径(但不用担心,可以覆盖默认值) 确保每个 ...
- Enum 扩展
项目中,用到枚举值,并且增加中英文描述. 一般的[Description]属性,无法满足中英文,所以进行了简单扩展. 继承DescriptionAttribute,增加了英文描述description ...
- 我的G++编译选项
-Wall -Wextra -g3 -DLOCAL -Wshadow -Wpointer-arith -Wcast-qual -Waggregate-return -Winline -Wunreach ...
- day5 if else elif 判断语句
age_of_princal = 56 guess_age = int( input(">>:") ) '''伪代码,提供思路用 if guess_age == age ...
- 述 SQL 中的 distinct 和 row_number() over() 的区别及用法
1 前言 在咱们编写 SQL 语句操作数据库中的数据的时候,有可能会遇到一些不太爽的问题,例如对于同一字段拥有相同名称的记录,我们只需要显示一条,但实际上数据库中可能含有多条拥有相同名称的记录,从而在 ...
- sql server 小技巧(8) visual studio 2013里使用Sql server compact 4.0及发布问题处理
1. 安装 Microsoft SQL Server Compact 4.0 https://www.microsoft.com/zh-cn/download/confirmation.aspx?i ...
- Luogu 1312 【NOIP2011】玛雅游戏 (搜索)
Luogu 1312 [NOIP2011]玛雅游戏 (搜索) Description Mayan puzzle 是最近流行起来的一个游戏.游戏界面是一个7行5列的棋盘,上面堆放着一些方块,方块不能悬空 ...