hdu 3836 Equivalent Sets trajan缩点
Equivalent Sets
Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Others)
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
3 2
1 2
1 3
2
Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
题意:给你n个点,m条边的有向图,最少加几条边使得改图为强连通;
思路:对于一个缩完点的图,要使得其强连通,入度和出度都至少为1;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#include<stdlib.h>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-6
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=1e6+,inf=1e9+;
const LL INF=5e17+,mod=1e9+; struct is
{
int u,v;
int next;
}edge[];
int head[];
int belong[];
int dfn[];
int low[];
int stackk[];
int instack[];
int number[];
int in[N],out[N];
int n,m,jiedge,lu,bel,top;
void update(int u,int v)
{
jiedge++;
edge[jiedge].u=u;
edge[jiedge].v=v;
edge[jiedge].next=head[u];
head[u]=jiedge;
}
void dfs(int x)
{
dfn[x]=low[x]=++lu;
stackk[++top]=x;
instack[x]=;
for(int i=head[x];i;i=edge[i].next)
{
if(!dfn[edge[i].v])
{
dfs(edge[i].v);
low[x]=min(low[x],low[edge[i].v]);
}
else if(instack[edge[i].v])
low[x]=min(low[x],dfn[edge[i].v]);
}
if(low[x]==dfn[x])
{
int sum=;
bel++;
int ne;
do
{
sum++;
ne=stackk[top--];
belong[ne]=bel;
instack[ne]=;
}while(x!=ne);
number[bel]=sum;
}
}
void tarjan()
{
memset(dfn,,sizeof(dfn));
bel=lu=top=;
for(int i=;i<=n;i++)
if(!dfn[i])
dfs(i);
}
int main()
{
int i,t;
while(~scanf("%d%d",&n,&m))
{
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(head,,sizeof(head));
jiedge=;
for(i=;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
update(u,v);
}
tarjan();
int x=;
int z=;
for(i=;i<=jiedge;i++)
if(belong[edge[i].v]!=belong[edge[i].u])
{
if(!out[belong[edge[i].u]])x++;
if(!in[belong[edge[i].v]])z++;
out[belong[edge[i].u]]++;
in[belong[edge[i].v]]++;
}
x=bel-x;
z=bel-z;
if(bel==)
printf("0\n");
else
printf("%d\n",max(x,z));
}
return ;
}
hdu 3836 Equivalent Sets trajan缩点的更多相关文章
- hdu 3836 Equivalent Sets
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3836 Equivalent Sets Description To prove two sets A ...
- [tarjan] hdu 3836 Equivalent Sets
主题链接: http://acm.hdu.edu.cn/showproblem.php? pid=3836 Equivalent Sets Time Limit: 12000/4000 MS (Jav ...
- hdu 3836 Equivalent Sets(强连通分量--加边)
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu——3836 Equivalent Sets
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- hdu 3836 Equivalent Sets(tarjan+缩点)
Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...
- hdu - 3836 Equivalent Sets(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=3836 判断至少需要加几条边才能使图变成强连通 把图缩点之后统计入度为0的点和出度为0的点,然后两者中的最大值就是 ...
- HDU - 3836 Equivalent Sets (强连通分量+DAG)
题目大意:给出N个点,M条边.要求你加入最少的边,使得这个图变成强连通分量 解题思路:先找出全部的强连通分量和桥,将强连通分量缩点.桥作为连线,就形成了DAG了 这题被坑了.用了G++交的,结果一直R ...
- hdoj 3836 Equivalent Sets【scc&&缩点】【求最少加多少条边使图强连通】
Equivalent Sets Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 104857/104857 K (Java/Other ...
- HDU 3836 Equivalent SetsTarjan+缩点)
Problem Description To prove two sets A and B are equivalent, we can first prove A is a subset of B, ...
随机推荐
- JustOj 1414: 潘神的排序
题目描述 老潘,袁少,小艾都是江理的大个子,他们想按身高排队,现在给你他们的身高,请你算出队伍中站在第二的有多高. 输入 输入三个整数,分别表示三个人的身高.(单位:纳米) 输出 输出身高排第二的身高 ...
- 在CentOS 6.X中安装中文字体
1.从Windows中 拷贝或者网络上下载你想要安装的字体文件(*.ttf文件) 2.新建字体目录 #mkdir /usr/share/fonts/ 3.修改字体文件的权限,使root用户以外的用户也 ...
- hashcat使用命令简介
1.指定HASH类型 在HashCat中--hash-type ?参数可以指定要破解的HASH类型,运行hashcat主程序加上--help参数,在* Generic hash types:中可以看到 ...
- python的类和对象
一.面向对象和面向过程 1.1面向过程的特点 优点是:极大的降低了写程序的复杂度,只需要顺着要执行的步骤,堆叠代码即可. 缺点是:一套流水线或者流程就是用来解决一个问题,代码牵一发而动全身. 1.2面 ...
- PHP 中文工具类,支持汉字转拼音、拼音分词、简繁互转
ChineseUtil 下载地址:https://github.com/Yurunsoft/ChineseUtil 另外一个中文转拼音工具:https://github.com/overtrue/pi ...
- 选择排序法、冒泡排序法、插入排序法、系统提供的底层sort方法排序之毫秒级比较
我的代码: package PlaneGame;/** * 选择排序法.冒泡排序法.插入排序法.系统提供的底层sort方法排序之毫秒级比较 * @author Administrator */impo ...
- ldap集成jenkins
jenkins版本:2.5.3,ldap插件:1.15 jenkins ldap支持需要安装ldap plugin,强烈建议插件安装版本为1.15及以上(支持ldap 配置测试) 安装插件: 系统管理 ...
- 20145311王亦徐 《网络对抗技术》 MSF基础应用
20145311王亦徐 <网络对抗技术> MSF基础应用 实验内容 掌握metasploit的基本应用方式以及常用的三种攻击方式的思路 主动攻击,即对系统的攻击,不需要被攻击方配合,以ms ...
- VC++ 获取Windows系统版本号、CPU名称
转载:https://blog.csdn.net/sunflover454/article/details/51525179 转载:https://blog.csdn.net/magictong/ar ...
- 封装QML能访问的类
一.常用宏 1.信号与槽 C++类中的信号与槽都可以在QML中访问 2.C++类的成员函数,Q_INVOKABLE Q_INVOKABLE void function(); 3.C++类的枚举,Q_E ...