奇怪吸引子---QiChen
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
u=a*(j - i) + j*k
v=c*i + j - i*k
w=i*j - b*k
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j [Variables]
a=38.000000
b=2.666667
c=80.000000
i=-20.000000
j=0.100000
k=0.200000
t=0.000200
混沌图像:



奇怪吸引子---QiChen的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- mac安装navicat mysql破解版
下载破解中文版http://m6.pc6.com/xuh6/navicat12027pre.zip 完成下载后无法正常进行安装,此时应该打开命令行执行 sudo spctl --master-disa ...
- java多线程快速入门(五)
常用线程api方法 多线程运行状态 1.新建状态 用new创建一个线程 2.就绪状态 当调用线程的start()方法 3.运行状态 当线程获得cpu,开始执行run方法 4.阻塞状态 线程通过调用sl ...
- CentOS配置通过DHCP的方式动态获取IP
修改/etc/sysconfig/network NETWORKING=yes 修改/etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 ONBO ...
- 数论-质数 poj2689,阶乘分解,求阶乘的尾零hdu1124, 求尾零为x的最小阶乘
/* 要求出[1,R]之间的质数会超时,但是要判断[L,R]之间的数是否是素数却不用筛到R 因为要一个合数n的最大质因子不会超过sqrt(n) 所以只要将[2,sqrt(R)]之间的素数筛出来,再用这 ...
- poj1179 环形+区间dp
因为要用到模,所以左起点设置为0比较好 #include<iostream> #include<cstdio> #include<cstring> #define ...
- this和super不能同时出现在构造方法中
package com.bjpowernode.t02inheritance.c09; /* * 使用super调用父类的构造方法 */public class TestSuper02 { publi ...
- [转] 通过jQuery Ajax使用FormData对象上传文件
FormData对象,是可以使用一系列的键值对来模拟一个完整的表单,然后使用XMLHttpRequest发送这个"表单". 在 Mozilla Developer 网站 使用For ...
- Eclipse中打包maven项目-war包方式
IntelliJ IDEA打包成war(包括maven项目)点击打开链接 首先要在maven项目中的pom.XML中配置好需要的配置: <project xmlns="http://m ...
- 由自定义事件到vue数据响应
前言 除了大家经常提到的自定义事件之外,浏览器本身也支持我们自定义事件,我们常说的自定义事件一般用于项目中的一些通知机制.最近正好看到了这部分,就一起看了下自定义事件不同的实现,以及vue数据响应的基 ...
- 每日踩坑 2018-01-09 WebAPI会如何面对 枚举 参数?
这一块确实有些疑问, 众所周知 枚举参数我们传送枚举值所对应的数字就行了, 以前 Leader 跟我讲过,枚举参数会将字符串值也能够成功转化,而且枚举值定义之外的数字也可以被转为枚举值. 主要的问题在 ...