http://acm.hdu.edu.cn/showproblem.php?pid=4635

Strongly connected

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3821    Accepted Submission(s): 1510

Problem Description
Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point. 
 
Input
The first line of date is an integer T, which is the number of the text cases.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
 
Output
For each case, you should output the maximum number of the edges you can add.
If the original graph is strongly connected, just output -1.
 
Sample Input
3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
 
Sample Output
Case 1: -1
Case 2: 1
Case 3: 15
题目大意:给一个简单有向图,在图中加边,问在保证图不强连通的情况下最多能加多少边。
题目分析:仔细考虑可知如果不连通,至少有两个强连通分量。而一个强连通分量最多有 N*(N-1)条边,所以这道题的最后答案应该是成为两个强连通分量。
总边数为 sum=(n1-1)*n1+(n2-1)*n2+(n2*n1),(其中n1+n2=n)由于已经存在了m条边,所以最后答案是ans=sum-m;
所以对于上述sum 的最大值求最大值可知应该使其中一个强连通分量的顶点数n1尽可能小,前提是这两个强连通分量之间没有强连通,即这两个强连通分量的入度或者出度为0。则在Tarjan求出各个强连通分量之后,再缩点统计各个强连通分量的入度和出度,最后找出顶点数最少的入度或者出度为0的强连通分量代入即可。
【PS:一定要记得使用边数m时,不要用while(m--),可能会因为下面需要使用m而无限wa。】
 #include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int maxn=;//边的最大值
const int maxn1=;//顶点最大值
struct edge{
int from;
int to;
int next;
}EDGE[maxn];
vector<int>vc[maxn1];
int head[maxn1],dfn[maxn1],vis[maxn1],low[maxn1],col[maxn1],out[maxn1],in[maxn1],en[maxn1],stk[maxn1];//各个变量的意义可参照上篇博客
int edge_cnt=,tot1=,tot2=,scc_cnt=,tot0=;
int n,m;
void add(int x,int y)
{
EDGE[edge_cnt].from=x;
EDGE[edge_cnt].to=y;
EDGE[edge_cnt].next=head[x];
head[x]=edge_cnt++;
}
void Tarjan(int u)
{
low[u]=dfn[u]=++tot1;//注意tot1的初值必须是1【因为dfn必须为正数】,所以这里使用++tot1而不用tot1++;
vis[u]=;
stk[++tot2]=u;
for(int i = head[u]; i != - ; i = EDGE[i].next)
{
if(!dfn[EDGE[i].to]){
Tarjan(EDGE[i].to);
low[u]=min(low[u],low[EDGE[i].to]);
}
else if(vis[EDGE[i].to]){
low[u]=min(low[u],low[EDGE[i].to]);
}
}
if(low[u]==dfn[u]){
int xx;
scc_cnt++;//注意scc_cnt也是从1开始的,因为要染色,区别于为染色的0
do{
xx=stk[tot2--];
vc[scc_cnt].push_back(xx);
col[xx]=scc_cnt;
vis[xx]=;
}while(xx!=u);
}
}
void INIT()
{
for(int i = ; i < maxn1 ; i++)
vc[i].clear();
edge_cnt=,tot1=,tot2=,scc_cnt=,tot0=;
memset(head,-,sizeof(head));
memset(stk,,sizeof(stk));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(col,,sizeof(col));
}
void suodian()//缩点
{
for(int i = ; i < edge_cnt ; i++)
{
if(col[EDGE[i].from]!=col[EDGE[i].to])
{
in[col[EDGE[i].to]]++;//缩点
out[col[EDGE[i].from]]++;
}
}
}
int main()
{
int t;
scanf("%d",&t);
int case1=;
while(t--)
{
INIT();
scanf("%d%d",&n,&m);
int M=m;
while(M--)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
for(int i = ; i <= n ; i++)
{
if(!dfn[i]){
Tarjan(i);
}
} printf("Case %d: ",case1++);
if(scc_cnt==)
{
printf("-1\n");
}
else
{
suodian();
int minn=-;
for(int i = ; i <= scc_cnt ; i++)
{
if(in[i]==||out[i]==)
{
int asd=vc[i].size();
if(minn==-||minn>asd)
{
minn=asd;
}
}
}
cout << (n-minn)*(n-minn-)+minn*(minn-)+minn*(n-minn)-m<<endl;
}
}
return ;
}
 
 

【HDOJ4635】【Tarjan缩点+思维】【经典】的更多相关文章

  1. POJ1236:Network of Schools (思维+Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24880   Accepted: 99 ...

  2. hihoCoder 1185 连通性·三(Tarjan缩点+暴力DFS)

    #1185 : 连通性·三 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 暑假到了!!小Hi和小Ho为了体验生活,来到了住在大草原的约翰家.今天一大早,约翰因为有事要出 ...

  3. POJ 1236 Network of Schools(Tarjan缩点)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16806   Accepted: 66 ...

  4. King's Quest —— POJ1904(ZOJ2470)Tarjan缩点

    King's Quest Time Limit: 15000MS Memory Limit: 65536K Case Time Limit: 2000MS Description Once upon ...

  5. 【BZOJ-2438】杀人游戏 Tarjan + 缩点 + 概率

    2438: [中山市选2011]杀人游戏 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1638  Solved: 433[Submit][Statu ...

  6. 【BZOJ-1924】所驼门王的宝藏 Tarjan缩点(+拓扑排序) + 拓扑图DP

    1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 787  Solved: 318[Submit][Stat ...

  7. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  8. BZOJ 1051 受欢迎的牛(Tarjan缩点)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4573  Solved: 2428 [Submit][S ...

  9. HDU4612+Tarjan缩点+BFS求树的直径

    tarjan+缩点+树的直径题意:给出n个点和m条边的图,存在重边,问加一条边以后,剩下的桥的数量最少为多少.先tarjan缩点,再在这棵树上求直径.加的边即是连接这条直径的两端. /* tarjan ...

随机推荐

  1. laravel模型中设计使用单选按钮的方法:

    模型中写入: const SEX_UN = 10;//未知: const SEX_BOY = 20;//男 const SEX_GRIL = 30;//女 public function sex($i ...

  2. java 一些容易忽视的小点-类和对象

    构造器 通过new关键字调用 构造器虽然有返回值,但是不能定义返回值类型(返回值的类型肯定是本类),不能在构造器里使用return返回某个值. 构造器是有权限的,也就是可以添加public,也可以添加 ...

  3. bootstrap学习参考网站

    ----https://www.     evget    .com   /article /

  4. Огонек--灯光--IPA--俄语

    苏联老歌总让人沉浸其中.

  5. doctype和Quirks模式

    doctype: 告诉浏览器使用什么模式去渲染页面,可能会影响页面的css渲染和js代码的执行. DTD :为了兼容旧的浏览器渲染方式,将DTD作为参数告诉浏览器使用什么模式渲染页面.始于IE6; 1 ...

  6. 用Java给数组排序

    public class BubbleDemo {public static void main(String[] args) { int arr[]={1,3,5,7,2,4,6,8,9}; bub ...

  7. SQL-22 统计各个部门对应员工涨幅的次数总和,给出部门编码dept_no、部门名称dept_name以及次数sum

    题目描述 统计各个部门对应员工涨幅的次数总和,给出部门编码dept_no.部门名称dept_name以及次数sumCREATE TABLE `departments` (`dept_no` char( ...

  8. Java基础-常用工具类(一)

    object类 Object 类是所有类的的父类,如果一个类没有明确使用EXPENTS关键字明确标识继承另外一个类,那么这个类默认继承object类,oject类中的方法适合所有子类 1)toStri ...

  9. Centos7部署Flannel网络(八)

    1.为Flannel生成证书 [root@linux-node1 ssl]# vim flanneld-csr.json { "CN": "flanneld", ...

  10. SharePoint Framework 企业向导(三)

    博客地址:http://blog.csdn.net/FoxDave 透视视图:SharePoint在更广泛的SharePoint平台中 SPFx是一个新的模型,附加在已存在的方法上,但是专注于为用 ...