Codeforces 1096D - Easy Problem - [DP]
题目链接:http://codeforces.com/problemset/problem/1096/D
题意:
给出一个小写字母组成的字符串,如果该字符串的某个子序列为 $hard$,就代表这个字符串是不好的。
现在你要删掉若干字母,使得字符串是好的,同时删除第 $i$ 个字母会使得歧义程度增加 $a[i]$,你需要让歧义程度最低,输出这个值。
题解:
$dp[i][x=0,1,2,3]$ 的状态是前 $i$ 个字母,第二维 $x$ 代表:$0$——不包含任何有可能构成 “$hard$” 的子序列;$1$——含有 “$h$” 子序列;$2$——含有 “$ha$” 子序列;$3$——含有 $har$ 子序列。
$dp[i][x=0,1,2,3]$ 记录的值当然就是歧义程度。
转移的话,$dp[i][0]$ 的转移很简单。其次,则需要分别考虑当前字符是不是 $h$、$a$、$r$,然后相应转移出 $dp[i][1]$、$dp[i][2]$、$dp[i][3]$,具体参加代码。
另外一个需要注意的是 ok?x:y 这个三目运算符外面要加括号……要不然由于加号优先级比它高,所以会把前面的加号也算在判定条件里……
讲真,刚开始想道这样设定状态,以及相应的状态转移到底对不对,心里也没底,没想到写了一发居然就1A了……
AC代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e5+;
int n;
char s[maxn];
ll a[maxn];
ll dp[maxn][];
void print(int i) {
cout<<dp[i][]<<" "<<dp[i][]<<" "<<dp[i][]<<" "<<dp[i][]<<endl;
}
int main()
{
cin>>n;
scanf("%s",s+);
for(int i=;i<=n;i++) scanf("%I64d",&a[i]); memset(dp,0x3f,sizeof(dp));
if(s[]=='h')
dp[][]=a[], dp[][]=;
else
dp[][]=;
for(int i=;i<=n;i++)
{
dp[i][]=dp[i-][]+((s[i]=='h')?a[i]:0ll); if(s[i]=='h')
dp[i][]=min(dp[i-][],dp[i-][]);
else
dp[i][]=dp[i-][]+((s[i]=='a')?a[i]:0ll); if(s[i]=='a')
dp[i][]=min(dp[i-][],dp[i-][]);
else
dp[i][]=dp[i-][]+((s[i]=='r')?a[i]:0ll); if(s[i]=='r')
dp[i][]=min(dp[i-][],dp[i-][]);
else
dp[i][]=dp[i-][]+((s[i]=='d')?a[i]:0ll);
} ll ans=INF;
for(int i=;i<;i++) ans=min(ans,dp[n][i]);
cout<<ans<<endl;
}
Codeforces 1096D - Easy Problem - [DP]的更多相关文章
- Codeforces 1096D Easy Problem 【DP】
<题目链接> 题目大意: 给你一个字符串,每个字符有权值,问现在删除字符串中的字符使其中没有"hard"的最小代价是多少. 解题分析: 用DP来求解: 转 ...
- D. Easy Problem dp(有衔接关系的dp(类似于分类讨论) )
D. Easy Problem dp(有衔接关系的dp(类似于分类讨论) ) 题意 给出一个串 给出删除每一个字符的代价问使得串里面没有hard的子序列需要付出的最小代价(子序列不连续也行) 思路 要 ...
- CF1096:D. Easy Problem(DP)
Vasya is preparing a contest, and now he has written a statement for an easy problem. The statement ...
- CF 1096D Easy Problem [动态规划]
题目链接:http://codeforces.com/problemset/problem/1096/D 题意: 有一长度为n的字符串,每一字符都有一个权值,要求现在从中取出若干个字符,使得字符串中没 ...
- Codeforces 706C - Hard problem - [DP]
题目链接:https://codeforces.com/problemset/problem/706/C 题意: 给出 $n$ 个字符串,对于第 $i$ 个字符串,你可以选择花费 $c_i$ 来将它整 ...
- CF1096D Easy Problem(DP)
题意:给出一个字符串,去掉第i位的花费为a[i],求使字符串中子串不含hard的最小代价. 题解:这题的思路还是比较套路的, dp[i][kd]两维,kd=0表示不含d的最小花费,1表示不含rd ...
- CodeForces 1096D(线性dp)
传送门 •题意 给出一个长度为n的字符串s,对于每个$s_{i}$有$a_{i}$的价值 让你删除最小的价值,使得字符串中不存在$hard$这个子序列 •思路 设dp[1]是不存在以$h$为前缀的最小 ...
- Codeforces 706 C. Hard problem (dp)
题目链接:http://codeforces.com/problemset/problem/706/C 给你n个字符串,可以反转任意一个字符串,反转每个字符串都有其对应的花费ci. 经过操作后是否能满 ...
- codeforces A. In Search of an Easy Problem
A. In Search of an Easy Problem time limit per test 1 second memory limit per test 256 megabytes inp ...
随机推荐
- JS 全屏代码
// 推断各种浏览器,找到正确的方法 function launchFullscreen(element) { if(element.requestFullscreen) { element.requ ...
- 严苛模式 strictmode
参考链接 http://blog.csdn.net/brokge/article/details/8543145 一.严苛模式-虚拟机策略 虚拟机策略(VmPolicy)能检查内存泄漏,譬如,当关闭一 ...
- 简单的topK问题
/************************************************************************/ /* 求一组数据中的top(K)问题,这是一个经典 ...
- 远程桌面中Tab键不能补全的解决办法
我们曾在之前的一篇文章中介绍了windows远程连接ubuntu的方法,在成功登陆远程桌面环境之后,发现在终端中Tab键不能自动补齐(但是Ctrl +Tab 可以用,但是需要按下组合键才能补全的话,时 ...
- 【emWin】例程二十七:窗口对象——Listview
简介: LISTVIEW小工具可在具有多个列的列表中选择某个元素.由于LISTVIEW小工具包含了 一个HEADER小工具,因此可对列加以管理(排序等).所创建的LISTVIEW 既可以无环绕型框架窗 ...
- Angularjs中config中置入以下拦截器
$httpProvider.interceptors.push(['$rootScope', '$q', '$localStorage', function ($rootScope, $q, $loc ...
- 短信文本查找之 MATCH 与 LIKE
最近发现原生短信应用的搜索功能的搜索结果十分不准确,所以就开始追踪代码: 关于android searchview的使用这里就不描述了,简单说一下,android的searchVIew是支持autoc ...
- token令牌和jwt
用户登录,后端生成token返回给前端 前端拿到token,以后每次登录使用header里的token进行权限验证 后端接收到前端传来的token,如果是通过数据库或redis或session进行比对 ...
- MYSQL + MHA +keepalive + VIP安装配置(二)--MHA的配置
一.总概 1.MHA介绍 MHA(Master High Availability)是自动的master故障转移和Slave提升的软件包.它是基于标准的MySQL复制(异步/半同步). MH ...
- 面向对象方法的重载(overloading)和覆盖(overriding)。
在有些JAVA书籍中将overriding称为重载,overloading称为过载. Overloading在一个类中可以定义多个同名方法,各个方法的参数表一定不同.但修饰词可能相同,返回值也可能 ...