最短路径算法——Dijkstra算法与Floyd算法
转自:https://www.cnblogs.com/smile233/p/8303673.html
最短路径
①在非网图中,最短路径是指两顶点之间经历的边数最少的路径。
AE:1 ADE:2 ADCE:3 ABCE:3
②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径。
AE:100 ADE:90 ADCE:60 ABCE:70
③单源点最短路径问题
问题描述:给定带权有向图G=(V, E)和源点v∈V,求从v到G中其余各顶点的最短路径。
应用实例——计算机网络传输的问题:怎样找到一种最经济的方式,从一台计算机向网上所有其它计算机发送一条消息。
④每一对顶点之间的最短路径
问题描述:给定带权有向图G=(V, E),对任意顶点vi,vj∈V(i≠j),求顶点vi到顶点vj的最短路径。
- 解决办法1:每次以一个顶点为源点,调用Dijkstra算法n次。显然,时间复杂度为O(n3)。
- 解决办法2:弗洛伊德提出的求每一对顶点之间的最短路径算法——Floyd算法,其时间复杂度也是O(n3),但形式上要简单些。
Dijkstra算法
①基本思想:设置一个集合S存放已经找到最短路径的顶点,S的初始状态只包含源点v,对vi∈V-S,假设从源点v到vi的有向边为最短路径。以后每求得一条最短路径v, …, vk,就将vk加入集合S中,并将路径v, …, vk , vi与原来的假设相比较,取路径长度较小者为最短路径。重复上述过程,直到集合V中全部顶点加入到集合S中。(贪心思想)
②设计数据结构 :
1、图的存储结构:带权的邻接矩阵存储结构 。
2、数组dist[n]:每个分量dist[i]表示当前所找到的从始点v到终点vi的最短路径的长度。初态为:若从v到vi有弧,则dist[i]为弧上权值;否则置dist[i]为∞。
3、数组path[n]:path[i]是一个字符串,表示当前所找到的从始点v到终点vi的最短路径。初态为:若从v到vi有弧,则path[i]为vvi;否则置path[i]空串。
4、数组s[n]:存放源点和已经生成的终点,其初态为只有一个源点v。
③Dijkstra算法——伪代码
. 初始化数组dist、path和s;
. while (s中的元素个数<n)
2.1 在dist[n]中求最小值,其下标为k;
2.2 输出dist[j]和path[j];
2.3 修改数组dist和path;
2.4 将顶点vk添加到数组s中;
④C++代码实现
#include<iostream>
#include<fstream>
#include<string>
using namespace std;
#define MaxSize 10
#define MAXCOST 10000
// 图的结构
template<class T>
struct Graph
{
T vertex[MaxSize];// 存放图中顶点的数组
int arc[MaxSize][MaxSize];// 存放图中边的数组
int vertexNum, arcNum;// 图中顶点数和边数
};
// 最短路径Dijkstra算法
void Dijkstra(Graph<string> G,int v)
{
int dist[MaxSize];// i到j的路径长度
string path[MaxSize];// 路径的串
int s[MaxSize];// 已找到最短路径的点的集合
bool Final[MaxSize];//Final[w]=1表示求得顶点V0至Vw的最短路径
// 初始化dist\path
for (int i = ; i < G.vertexNum; i++)
{
Final[i] = false;
dist[i] = G.arc[v][i];
if (dist[i] != MAXCOST)
path[i] = G.vertex[v] + G.vertex[i];
else
path[i] = " ";
}
s[] = v; // 初始化s
Final[v] = true;
int num = ;
while (num < G.vertexNum)
{
// 在dist中查找最小值元素
int k = ,min= MAXCOST;
for (int i = ; i < G.vertexNum; i++)
{
if (i == v)continue;
if (!Final[i] && dist[i] < min)
{
k = i;
min = dist[i];
}
}
cout << dist[k]<<path[k]<<endl;
s[num++] = k;// 将新生成的结点加入集合s
Final[k] = true;
// 修改dist和path数组
for (int i = ; i < G.vertexNum; i++)
{
if (!Final[i]&&dist[i] > dist[k] + G.arc[k][i])
{
dist[i] = dist[k] + G.arc[k][i];
path[i] = path[k] + G.vertex[i];
}
}
}
}
int main()
{
// 新建图
Graph<string> G;
string temp[]= { "v0","v1","v2","v3","v4" };
/*int length = sizeof(temp) / sizeof(temp[0]);
G.vertexNum = length;
G.arcNum = 7;*/
ifstream in("input.txt");
in >> G.vertexNum >> G.arcNum;
// 初始化图的顶点信息
for (int i = ; i < G.vertexNum; i++)
{
G.vertex[i] = temp[i];
}
//初始化图G的边权值
for (int i =; i <G.vertexNum; i++)
{
for (int j = ; j <G.vertexNum; j++)
{
G.arc[i][j] = MAXCOST;
}
}
for (int i = ; i < G.arcNum; i++)
{
int m, n,cost;
in >> m >> n >> cost;
G.arc[m][n] = cost;
}
Dijkstra(G, );
system("pause");
return ;
}
⑤测试数据
// input.txt
5 7
0 1 10
0 3 30
0 4 100
1 2 50
2 4 10
3 2 20
3 4 60
Floyd算法
①基本思想:对于从vi到vj的弧,进行n次试探:首先考虑路径vi,v0,vj是否存在,如果存在,则比较vi,vj和vi,v0,vj的路径长度,取较短者为从vi到vj的中间顶点的序号不大于0的最短路径。在路径上再增加一个顶点v1,依此类推,在经过n次比较后,最后求得的必是从顶点vi到顶点vj的最短路径。
②设计数据结构
1、图的存储结构:带权的邻接矩阵存储结构 。
2、数组dist[n][n]:存放在迭代过程中求得的最短路径长度。迭代公式:
3、数组path[n][n]:存放从vi到vj的最短路径,初始为path[i][j]="vivj"。
③C++代码实现
#include<iostream>
#include<fstream>
#include<string>
using namespace std;
#define MaxSize 10
#define MAXCOST 10000
int dist[MaxSize][MaxSize];// 存放在迭代过程中求得的最短路径
string path[MaxSize][MaxSize];// vi到vj的最短路径
// 图的结构
template<class T>
struct Graph
{
T vertex[MaxSize];// 存放图中顶点的数组
int arc[MaxSize][MaxSize];// 存放图中边的数组
int vertexNum, arcNum;// 图中顶点数和边数
};
void Floyd(Graph<string> G)
{
// 初始化
for(int i=;i<G.vertexNum;i++)
for (int j = ; j < G.vertexNum; j++)
{
if (i == j) { dist[i][j] = ; path[i][j] = ""; }
dist[i][j] = G.arc[i][j];
if (dist[i][j] != MAXCOST)
path[i][j] = G.vertex[i] + G.vertex[j];
else
path[i][j] = " ";
}
// 进行n次迭代
for(int k=;k<G.vertexNum;k++)
for(int i=;i<G.vertexNum;i++)
for (int j = ; j < G.vertexNum; j++)
if (dist[i][k] + dist[k][j] < dist[i][j])
{
dist[i][j] = dist[i][k] + dist[k][j];
path[i][j] = path[i][k] + path[k][j];
}
}
int main()
{
int i, j, cost;
Graph<string> G;// 存放图的信息
ifstream in("input.txt");
in >> G.vertexNum >> G.arcNum;
string temp[] = { "a","b","c" };
// 初始化图的顶点信息
for (int i = ; i < G.vertexNum; i++)
{
G.vertex[i] = temp[i];
}
//初始化图G
for (i = ; i < G.vertexNum; i++)
{
for (j = ; j < G.vertexNum; j++)
{
G.arc[i][j] = MAXCOST;
}
}
//构建图G
for (int k = ; k <G.arcNum; k++)
{
in >> i >> j >> cost;
G.arc[i][j] = cost;
}
Floyd(G);
for (i = ; i < G.vertexNum; i++)
{
for (j = ; j < G.vertexNum; j++)
{
if (i != j)
{
cout << "顶点" << i << "到顶点" << j << "的最短路径长度为" << dist[i][j] << endl;
cout << "具体路径为:" << path[i][j] << endl;
}
}
}
system("pause");
return ;
}
④测试数据
// input.txt
5
1 4
0 6
2 11
0 3
2 2
最短路径算法——Dijkstra算法与Floyd算法的更多相关文章
- 最短路径—大话Dijkstra算法和Floyd算法
Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...
- 最短路径—Dijkstra算法和Floyd算法
原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...
- 最短路径—Dijkstra算法和Floyd算法【转】
本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...
- 最短路径——Dijkstra算法和Floyd算法
Dijkstra算法概述 Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图(无 ...
- 【转载】最短路径—Dijkstra算法和Floyd算法
注意:以下代码 只是描述思路,没有测试过!! Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始 ...
- 最短路径Dijkstra算法和Floyd算法整理、
转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最短路径—Dijkstra算法和Floyd算法 Dijks ...
- 【转】最短路径——Dijkstra算法和Floyd算法
[转]最短路径--Dijkstra算法和Floyd算法 标签(空格分隔): 算法 本文是转载,原文在:最短路径-Dijkstra算法和Floyd算法 注意:以下代码 只是描述思路,没有测试过!! Di ...
- 最小路径算法(Dijkstra算法和Floyd算法)
1.单源点的最短路径问题:给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径. 我们用一个例子来具体说明迪杰斯特拉算法的流程. 定义源点为 0,dist[i]为源点 0 到顶点 i 的最短路径 ...
- 【转载】Dijkstra算法和Floyd算法的正确性证明
说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正 ----------- ...
- Dijkstra算法和Floyd算法的正确性证明
说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正 ------------- ...
随机推荐
- LAMP搭建个人网站
最近发了一篇paper,需要把成果展示出来,想到正好想到自己有一个阿里云服务器,并且在万网上看到www.yongjieshi.com这个域名一年才50块钱,于是决定搭建一个自己的网站 如果linux玩 ...
- [LeetCode&Python] Problem 598. Range Addition II
Given an m * n matrix M initialized with all 0's and several update operations. Operations are repre ...
- dfs——n的全排列(回溯)
#include <iostream> #include <cstring> #include <string> #include <map> #inc ...
- 第六课cnn和迁移学习-七月在线-cv
ppt 参数共享终于把拿一点想清楚啦,一定要知道w是矩阵! 在传统BP中,w前后连接时是all的,辣么多w使得你给我多少图片我就能记住多少信息-->导致过拟合-->cnn当中权值共享 激励 ...
- resNet代码-小象/cv
C:\yyy\ml\dengsong\ChinaHadoop\ChinaHadoop_C4-master\ChinaHadoop_C4-master\C4_ResNet_TF http://blog. ...
- HDU 3635:Dragon Balls(并查集)
Dragon Balls Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- D. The Fair Nut and the Best Path 树形dp (终于会了)
#include<bits/stdc++.h> #define int long long using namespace std; ; int a[maxn]; int dp[maxn] ...
- hdu1358 Period KMP
给出一个字符串,找出所有可以作为它循环节的子串长度 利用kmp的失配数组的性质,可以直接做 #include<stdio.h> #include<string.h> ; cha ...
- java中类加载时机
java虚拟机规范虽然没有强制性约束在什么时候开始类加载过程,但是对于类的初始化,虚拟机规范则严格规定了有且只有四种情况必须立即对类进行初始化,遇到new.getStatic.putStatic或in ...
- LNMP环境包安装IonCube教程
ioncube是业内优秀的php加密解密解决方案.和zend guard相比,ioncube具有如下优势: 1. 安全:zend guard的版本不是非常安全,网络上有破解使用zend,下面我们来看I ...