POJ 1228 (稳定凸包问题)
<题目链接>
<转载于 >>> >
首先来了解什么是稳定的凸包。比如有4个点:
这四个点是某个凸包上的部分点,他们连起来后确实还是一个凸包。但是原始的凸包可能不是这样。
比如:
即这四个点构成的凸包不算做“稳定”的。我们发现,当凸包上存在一条边上的点只有端点两个点的时候,这个凸包不是稳定的,因为它可以在这条边外再引入一个点,构成一个新的凸包。但一旦一条边上存在三个点,那么不可能再找到一个点使它扩展成一个新的凸包,否则构成的新多边形将是凹的。
下面是一个典型的稳定凸包:

于是此题的做法就很明确了,就是在给出的点中,找到凸包,并且判断这个凸包是不是每条边至少有三个点。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define eps 1e-8
using namespace std; struct point{
double x,y;
};
point p[],stack[];
int N,top;
double multi(point p1, point p2, point p3){ //向量(p1->p2)^(p1->p3)
return (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x);
}
double dis(point a, point b){
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
int cmp(const void *a, const void *b){ //按极角排序
point c = *(point *)a;
point d = *(point *)b;
double k = multi(p[], c, d);
if(k < || (!k && dis(c, p[]) > dis(d, p[]))) return ;
return -;
}
void Convex(){ //凸包的构建 Andrew算法
for(int i = ; i < N; i++){ //先按x,y坐标排序,找到原点
point temp;
if(p[i].y < p[].y || ( p[i].y == p[].y && p[i].x < p[].x)){
temp = p[i];
p[i] = p[];
p[] = temp;
}
}
qsort(p + , N - , sizeof(p[]), cmp); //再将除原点以外的点按极角排序
stack[] = p[]; //先将起始的两个点压入栈内,在进行后面的判断
stack[] = p[];
top = ;
for(int i = ; i < N; i++){
while(top >= && multi(stack[top - ], stack[top], p[i]) < )top--; //共线的点也压入凸包内;
top++;
stack[top] = p[i];
}
}
bool judge(){ //这个函数是关键
for(int i=;i<top;i++){
if((multi(stack[i-],stack[i+],stack[i]))!=&&(multi(stack[i],stack[i+],stack[i+]))!=) //判断每条边是否有至少三个点,即判断i-1,i,i+1这三个点是否在一条直线上或者i,i+1,i+2是否在一条直线上
return false;
}
return true;
}
int main(){
int t;
cin>>t;
while(t--){
cin>>N;
for(int i=;i<N;i++)
scanf("%lf%lf",&p[i].x,&p[i].y);
if(N<)puts("NO");
else{
Convex();
if(judge())puts("YES");
else puts("NO");
}
}
return ;
}
2018-08-23
POJ 1228 (稳定凸包问题)的更多相关文章
- poj 1228 稳定凸包
Grandpa's Estate Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12337 Accepted: 3451 ...
- Grandpa's Estate - POJ 1228(稳定凸包)
刚开始看这个题目不知道是什么东东,后面看了大神的题解才知道是稳定凸包问题,什么是稳定凸包呢?所谓稳定就是判断能不能在原有凸包上加点,得到一个更大的凸包,并且这个凸包包含原有凸包上的所有点.知道了这个东 ...
- POJ 1228 - Grandpa's Estate 稳定凸包
稳定凸包问题 要求每条边上至少有三个点,且对凸包上点数为1,2时要特判 巨坑无比,调了很长时间= = //POJ 1228 //稳定凸包问题,等价于每条边上至少有三个点,但对m = 1(点)和m = ...
- POJ 1228 Grandpa's Estate 凸包 唯一性
LINK 题意:给出一个点集,问能否够构成一个稳定凸包,即加入新点后仍然不变. 思路:对凸包的唯一性判断,对任意边判断是否存在三点及三点以上共线,如果有边不满足条件则NO,注意使用水平序,这样一来共线 ...
- 凸包稳定性判断:每条边上是否至少有三点 POJ 1228
//凸包稳定性判断:每条边上是否至少有三点 // POJ 1228 #include <iostream> #include <cstdio> #include <cst ...
- POJ 1228 Grandpa's Estate --深入理解凸包
题意: 判断凸包是否稳定. 解法: 稳定凸包每条边上至少有三个点. 这题就在于求凸包的细节了,求凸包有两种算法: 1.基于水平序的Andrew算法 2.基于极角序的Graham算法 两种算法都有一个类 ...
- POJ 1228 Grandpa's Estate(凸包)
Grandpa's Estate Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 11289 Accepted: 3117 ...
- ●POJ 1228 Grandpas Estate
题链: http://poj.org/problem?id=1228 题解: 计算几何,凸包 题意:给出一些点,求出其凸包,问是否是一个稳定的凸包. 稳定凸包:不能通过新加点使得原来凸包上的点(包括原 ...
- poj 3348 Cow 凸包面积
Cows Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8122 Accepted: 3674 Description ...
随机推荐
- rem,em
任意浏览器的默认字体高都是16px.所有未经调整的浏览器都符合: 1em=16px.那么12px=0.75em,10px=0.625em.为了简化font-size的换算,需要在css中的body选择 ...
- linux笔记_day03
1.命令行展开{} mkdir -p a/b/{c,d/e} 2.-v verbose 详细的 3.touch touch - change file timestamps 4.stat 文件 显示 ...
- 集群下Dubbo负载均衡配置
在集群负载均衡时,Dubbo提供了4种均衡策略,默认为Random(随机调用) 负载均衡策略: 1).Random LoadBalance(随机,按照权重的设置随机概率) 2).RoundRobin ...
- 简单透彻理解JSONP原理及使用
首先提一下JSON这个概念,JSON是一种轻量级的数据传输格式,被广泛应用于当前Web应用中.JSON格式数据的编码和解析基本在所有主流语言中都被实现,所以现在大部分前后端分离的架构都以JSON格式进 ...
- k64 datasheet学习笔记1---概述
1.前言 k64 datasheet描述了Freescale MCU的特性.架构和编程模型,主要是面向使用MCU的系统架构和软件应用开发人员. 2.模块划分 datasheet主要按功能对模块进行划分 ...
- python的技巧和方法你了解多少?
学了这些你的python代码将会改善与你的技巧将会提高. 1. 路径操作 比起os模块的path方法,python3标准库的pathlib模块的Path处理起路径更加的容易. 获取当前文件路径 前提导 ...
- C++经典面试题(最全,面中率最高)
C++经典面试题(最全,面中率最高) 1.new.delete.malloc.free关系 delete会调用对象的析构函数,和new对应free只会释放内存,new调用构造函数.malloc与fre ...
- (常用)re模块
re模块(正则)#re:一些带有特殊含义的符号或者符号的组合#为什么要用re:一堆字符串中找到你所需要的内容,过滤规则是什么样,通过re模块功能来告诉计算机你的过滤规则#应用:在爬虫中最为常用:使用爬 ...
- ERROR 2003 (HY000): Can't connect to MySQL server on 'localhost' (10061),mysql服务已启动
1 前言 在mysql服务已启动,用命令行进入或者heidisql工具都提示ERROR 2003 (HY000): Can't connect to MySQL server on 'localhos ...
- sklearn聚类模型:基于密度的DBSCAN;基于混合高斯模型的GMM
1 sklearn聚类方法详解 2 对比不同聚类算法在不同数据集上的表现 3 用scikit-learn学习K-Means聚类 4 用scikit-learn学习DBSCAN聚类 (基于密度的聚类) ...