题目链接

每个城市要么建首都要么不建,考虑2-SAT

这样一个国家内城市两两连边是很显然的,但是边数为O(n^2)

每个国家中仅有一个建首都,考虑新建前缀S[i]=1/0这2n个点表示当前国家的[1,i]中建了/没建首都

现在考虑这些限制:(A[i]=1/0表示i城市建/不建)

0.若A[i]=1,则S[i]=1;若S[i]=0,则A[i]=0(对于i自己)

1.若A[i]=1,则S[i-1]=0;若S[i-1]=1,则A[i]=0 (一个国家一个首都的限制)(前者由A[i]->A[i-1]'是多余的,连到\(S_{i-1}'\)自然会连到\(A_{i-1}'\))

2.若S[i-1]=1,则S[i]=1;若S[i]=0,则S[i-1]=0 (前缀关系)

后缀优化的原理是一样的,不过这题并不需要

再加上边端点的限制就可以了

//167004kb	16344ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
const int N=4e6+5,M=N<<1; int n,m,k,Enum,H[N],nxt[M],to[M],id,low[N],dfn[N],sk[N],top,cnt,bel[N];
bool ins[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AddEdge(int u,int v){
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
}
inline void Tarjan(int x)
{
dfn[x]=low[x]=++id, ins[x]=1, sk[++top]=x;
for(int v,i=H[x]; i; i=nxt[i])
if(!dfn[v=to[i]]) Tarjan(v),low[x]=std::min(low[x],low[v]);
else if(ins[v]) low[x]=std::min(low[x],dfn[v]);
if(low[x]==dfn[x])
{
++cnt;
do{
ins[sk[top]]=0, bel[sk[top]]=cnt;
}while(x!=sk[top--]);
}
} int main()
{
n=read(),m=read(),k=read();
for(int u,v,i=1; i<=m; ++i)
u=read(),v=read(),AddEdge(u+n,v),AddEdge(v+n,u);
for(int i=1; i<=n; ++i) AddEdge(i,2*n+i),AddEdge(3*n+i,i+n);
for(int num,now,las,i=1; i<=k; ++i)
{
num=read(), las=read();
for(int j=2; j<=num; ++j,las=now)
{
now=read(),
AddEdge(2*n+las,2*n+now), AddEdge(3*n+now,3*n+las),
AddEdge(now,3*n+las), AddEdge(2*n+las,now+n);
}
}
for(int i=1; i<=n<<2; ++i)
if(!dfn[i]) Tarjan(i);
for(int i=1; i<=n; ++i)
if(bel[i]==bel[i+n]) {printf("NIE"); return 0;}
for(int i=n<<1|1; i<=3*n; ++i)
if(bel[i]==bel[i+n]) {printf("NIE"); return 0;}
printf("TAK"); return 0;
}
//150832kb 19404ms
//{//优化编号方式 注意这样编号要-1 -> 于是这样更慢了...?
// for(int u,v,i=1; i<=m; ++i)
// u=read()-1,v=read()-1,AddEdge(u<<1|1,v<<1),AddEdge(v<<1|1,u<<1);
// for(int i=0; i<n; ++i) AddEdge(i<<1,i+n<<1),AddEdge(i+n<<1|1,i<<1|1);
// for(int num,now,las,i=1; i<=k; ++i)
// {
// num=read(), las=read()-1;
// for(int j=2; j<=num; las=now,++j)
// {
// now=read()-1,
// AddEdge(las+n<<1,now+n<<1), AddEdge(now+n<<1|1,las+n<<1|1),
// AddEdge(now<<1,las+n<<1|1), AddEdge(las+n<<1,now<<1|1);
// }
// }
// n<<=2;
// for(int i=0; i<n; ++i)
// if(!dfn[i]) Tarjan(i);
// for(int i=0; i<n; i+=2)
// if(bel[i]==bel[i^1]) {printf("NIE"); return 0;}
// printf("TAK");
//}

BZOJ.3495.[PA2010]Riddle(2-SAT 前缀优化建图)的更多相关文章

  1. CF1007D. Ants(树链剖分+线段树+2-SAT及前缀优化建图)

    题目链接 https://codeforces.com/problemset/problem/1007/D 题解 其实这道题本身还是挺简单的,这里只是记录一下 2-SAT 的前缀优化建图的相关内容. ...

  2. [SDOI2017]天才黑客[最短路、前缀优化建图]

    题意 一个 \(n\) 点 \(m\) 边的有向图,还有一棵 \(k\) 个节点的 trie ,每条边上有一个字符串,可以用 trie 的根到某个节点的路径来表示.每经过一条边,当前携带的字符串就会变 ...

  3. 【CF587D】Duff in Mafia 二分+前缀优化建图+2-SAT

    [CF587D]Duff in Mafia 题意:给你一张n个点m条边的无向图,边有颜色和边权.你要从中删去一些边,满足: 1.任意两条删掉的边没有公共的顶点.2.任意两条剩余的.颜色相同的边没有公共 ...

  4. 【刷题】BZOJ 3495 PA2010 Riddle

    Description 有n个城镇被分成了k个郡,有m条连接城镇的无向边. 要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都. Input 第一行有三个整数,城镇数n(1<=n& ...

  5. 3495: PA2010 Riddle 2-sat 前缀优化

    3495: PA2010 Riddle 2-sat 前缀优化 链接 bzoj 思路 不想说啥了,看hwim的吧,我去睡觉了zZ. 代码 /******************************* ...

  6. 【BZOJ】3495: PA2010 Riddle 2-SAT算法

    [题意]有n个城镇被分成了k个郡,有m条连接城镇的无向边.要求给每个郡选择一个城镇作为首都,满足每条边至少有一个端点是首都.n,m,k<=10^6. [算法]2-SAT,前后缀优化建图 [题解] ...

  7. 3495: PA2010 Riddle

    3495: PA2010 Riddle 链接 分析: 每个点要么建首都,要么不建,并且一个点建了,会导致一些点不能建.所以可以考虑2-sat. 但是如果在每个郡里两两连边,边数是n^2的. 考虑用前缀 ...

  8. 4.15 省选模拟赛 编码 trie树 前缀和优化建图 2-sat

    好题 np. 对于20分 显然可以爆搜. 对于50分 可以发现每个字符串上的问号要么是0,要么是1.考虑枚举一个字符串当前是0还是1 这会和其他字符串产生矛盾. 所以容易 发现这是一个2-sat问题. ...

  9. [十二省联考2019]字符串问题——后缀自动机+parent树优化建图+拓扑序DP+倍增

    题目链接: [十二省联考2019]字符串问题 首先考虑最暴力的做法就是对于每个$B$串存一下它是哪些$A$串的前缀,然后按每组支配关系连边,做一遍拓扑序DP即可. 但即使忽略判断前缀的时间,光是连边的 ...

随机推荐

  1. Dubbo服务降级

    当服务器压力剧增的情况下,根据实际业务情况及流量,对一些服务和页面有策略的不处理或简单处理,从而释放服务器资源以保证核心业务正常运作或高效运作. 可以通过服务降级功能临时屏蔽某个出错的非关键服务并定义 ...

  2. Word打开默认显示缩略图,而不是文档结构图

    So easy! 1.打开Word文档,点击缩略图右侧的"X",关闭缩略图: 2.打开菜单[视图],勾选"文档结构图": 3.关闭当前Word文档: 4.再次打 ...

  3. AT91RM9200---SMC简介

    1.前言 SMC(Static Memory Controller)Atmel 9200静态存储控制器的简称,它可以产生信号来控制外部静态存储和外设.SMC可通过编程寄存器来进行配置. 它有8路片选和 ...

  4. 如何设置使eclipse修改代码不重启tomcat

    tomcat配置 1.server.xml reloadable="true"<Context docBase="ins" path="/ins ...

  5. 常用的4个eclipse插件安装过程及使用方法

    最近整合了4个常用eclipse插件安装过程,分别是PMD.checkstyle.findbugs.sourcemonitor插件.因为我这里没有外网,所以所有的插件不是最新版,建议有网的童鞋自行在外 ...

  6. 读SRE Google运维解密有感(一)

    前言 这几天打算利用碎片时间读了一下"SRE Google运维解密"这本书,目前读了前几章,感觉收获颇多,结合自己的工作经历和书中的要点,写一些感悟和思考 SRE 有关SRE我就不 ...

  7. 输入一个数,求1到他 的和(for循环)

  8. java多线程快速入门(十六)

    ThreadLocal关键字实现每个线程有自己的变量 package com.cppdy; class Number { private int num; public static ThreadLo ...

  9. 搭建ssh框架项目(二)

    一.创建dao层 (1)创建接口ICommonDao.java package com.cppdy.ssh.dao; public interface ICommonDao<T> { pu ...

  10. LeetCode(5):最长回文子串

    Medium! 题目描述: 给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 长度最长为1000. 示例: 输入: "babad" 输出: "bab&quo ...