题目链接

\(Description\)

\(Solution\)

合法的子序列只有三种情况:递增,递减,前半部分递增然后一直递减(下去了就不会再上去了)(当然还要都满足\(|a_{i+1}-a_i|=1\))。

容易想到区间DP。\(f[i][j]\)表示把区间\([i,j]\)全部删除的最大收益,还需要\(g[i][j]\)表示将区间\([i,j]\)删成连续上升的一段(\(a_i\sim a_j\))的最大收益,\(h[i][j]\)表示将区间\([i,j]\)删成连续下降的一段(\(a_i\sim a_j\))的最大收益。

那么\(g[i][j]\)的元素个数就是\(a_j-a_i+1\),\(h[i][j]\)的元素个数为\(a_i-a_j+1\),合并\(g[i][k],h[k][j]\)后的元素个数就是\(2a_k-a_i-a_j+2-1\)(减掉1个\(a_k\))。

那么$$f[i][j]=\max{f[i][k]+f[k+1][j],\ g[i][k]+h[k][j]+v[2a_k-a_i-a_j+1]}$$

其实\(g,h\)用一个数组就可以了,因为只需要判断一下\(a_i,a_j\)的大小关系,就知道是上升序列还是下降序列了。

最后的答案就是\(f\)的最大子段和。\(n^2\)求出来即可。

//78ms	1100KB
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=405,INF=0x3f3f3f3f; int A[N],val[N],f[N][N],g[N][N],dp[N]; inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now*f;
} int main()
{
int n=read();
for(int i=1; i<=n; ++i) val[i]=read();
for(int i=1; i<=n; ++i) A[i]=read(); for(int i=1; i<=n; ++i)
{
f[i][i]=val[1], g[i][i]=0;
for(int j=i+1; j<=n; ++j) f[i][j]=g[i][j]=-INF;
} for(int len=1; len<n; ++len)
for(int i=1; i+len<=n; ++i)
{
int j=i+len;
for(int k=i; k<j; ++k)
{
f[i][j]=std::max(f[i][j],f[i][k]+f[k+1][j]);
if((A[i]<A[j] && A[j]==A[k]+1)||(A[i]>A[j] && A[j]==A[k]-1))
g[i][j]=std::max(g[i][j],g[i][k]+f[k+1][j-1]);
}
for(int k=i; k<=j; ++k)
if(A[k]>=A[i] && A[k]>=A[j] && 2*A[k]-A[i]-A[j]+1<=n)//这东西显然不会<=0啊
f[i][j]=std::max(f[i][j],g[i][k]+g[k][j]+val[2*A[k]-A[i]-A[j]+1]);
}
for(int i=1; i<=n; ++i)
{
dp[i]=dp[i-1];
for(int j=1; j<=i; ++j) dp[i]=std::max(dp[i],dp[j-1]+f[j][i]);
}
printf("%d\n",dp[n]); return 0;
}

Codeforces.392E.Deleting Substrings(区间DP)的更多相关文章

  1. Codeforces - 149D 不错的区间DP

    题意:有一个字符串 s. 这个字符串是一个完全匹配的括号序列.在这个完全匹配的括号序列里,每个括号都有一个和它匹配的括号 你现在可以给这个匹配的括号序列中的括号染色,且有三个要求: 每个括号只有三种情 ...

  2. Codeforces 983B. XOR-pyramid【区间DP】

    LINK 定义了一种函数f 对于一个数组b 当长度是1的时候是本身 否则是用一个新的数组(长度是原数组-1)来记录相邻数的异或,对这个数组求函数f 大概是这样的: \(f(b[1]⊕b[2],b[2] ...

  3. CodeForces - 1025D: Recovering BST (区间DP)

    Dima the hamster enjoys nibbling different things: cages, sticks, bad problemsetters and even trees! ...

  4. Codeforces 1114D Flood Fill (区间DP or 最长公共子序列)

    题意:给你n个颜色块,颜色相同并且相邻的颜色块是互相连通的(连通块).你可以改变其中的某个颜色块的颜色,不过每次改变会把它所在的连通块的颜色也改变,问最少需要多少次操作,使得n个颜色块的颜色相同. 例 ...

  5. Codeforces 958C3 - Encryption (hard) 区间dp+抽屉原理

    转自:http://www.cnblogs.com/widsom/p/8863005.html 题目大意: 比起Encryption 中级版,把n的范围扩大到 500000,k,p范围都在100以内, ...

  6. CodeForces 149D Coloring Brackets 区间DP

    http://codeforces.com/problemset/problem/149/D 题意: 给一个给定括号序列,给该括号上色,上色有三个要求 1.只有三种上色方案,不上色,上红色,上蓝色 2 ...

  7. codeforces 149D Coloring Brackets (区间DP + dfs)

    题目链接: codeforces 149D Coloring Brackets 题目描述: 给一个合法的括号串,然后问这串括号有多少种涂色方案,当然啦!涂色是有限制的. 1,每个括号只有三种选择:涂红 ...

  8. CodeForces - 983B XOR-pyramid(区间dp,异或)

    XOR-pyramid time limit per test 2 seconds memory limit per test 512 megabytes input standard input o ...

  9. Codeforces 607B Zuma(区间DP)

    题目大概说,有n个颜色的宝石,可以消除是回文串的连续颜色序列,问最少要几下才能全部消除. 自然想到dp[i][j]表示序列i...j全部消除的最少操作数 有几种消除的方式都能通过枚举k(i<=k ...

随机推荐

  1. Windows域帐户

    域的直观优点: 1.域帐户可以在任意一台已经加入域的电脑上登录. 2.将域用户组加入到SQL Server登录里,域用户组内所有人员便都可以使用域用户登录数据库,继承相关权限. 3.域用户登录Team ...

  2. 获取静态 selected的当前的value的值

    <!DOCTYPE html><html><head><script>function checkField(val){alert("输入值已 ...

  3. windows 10 64bit下安装Tensorflow+Keras+VS2015+CUDA8.0 GPU加速

    原文地址:http://www.jianshu.com/p/c245d46d43f0 写在前面的话 2016年11月29日,Google Brain 工程师团队宣布在 TensorFlow 0.12 ...

  4. sqlserver2008r2数据库使用触发器对sa及其他数据库账号访问进行IP限制

    一.只允许指定IP访问数据库 创建测试账号 CREATE LOGIN testuser WITH PASSWORD = '123' GO CREATE TRIGGER [tr_connection_l ...

  5. 通达OA2008从windows环境移植到linux部署手册

    通达OA2008从windows环境移植到linux中(centos5.5及以上版本) OA系统拓扑图: 环境搭建(安装lamp环境) 1.安装xampp集成lamp包xampp-linux-1.6. ...

  6. JS 自己实现Map

    function MyMap() { var items = {}; this.has = function (key) { return key in items; }; this.set = fu ...

  7. 使用 HTTP/2 提升性能的几个建议

    历史悠久的超文本传输协议,即HTTP标准,最近版本升级了.HTTP/2在2015年5月被批准,目前已经在很多Web浏览器和服务器中得到实现(包括NGINX Plus和开源NGINX).大约有三分之二的 ...

  8. MariaDB和mySQL到底区别在哪,实验说明问题!

    先看图,插入数据和时间的对数图,实验条件一直且关闭了mysql默认事务保证不是单条事务而是批量事务 另外确保了mysql and mariaDB都是在支持事务存储引擎下测试的. MySQL之父Wide ...

  9. MyEclipse2014安装插件的几种方式(适用于Eclipse或MyEclipse其他版本)

    农历 乙未 羊年 十一月初九 周六 2015年12月19日 14:29 编辑者:刘军 标题: 服务器的搭建请参考该文:<Win7 x64 svn 服务器搭建> ============== ...

  10. JS定义一个立即执行的可重用函数

    我定义了一个函数表达式 testFun var testFun = (function() { ... //函数内容})(); 测试结果:虽然 testFun 函数有如愿在页面加载后立即被执行,但再次 ...