BI-LSTM and CRF using Keras
问题1:CUDA_ERROR_OUT_OF_MEMORY: How to activate multiple GPUs from Keras in Tensorflow
import keras.backend as K
config = K.tf.ConfigProto()
config.gpu_options.allow_growth = True
session = K.tf.Session(config=config)
讀作者的code就能了解數據的格式了。
在process_data.py檔案裡。
稍微解釋一下。
###原始數據###
老 B-PER
王 I-PER
很 O
喜 O
歡 O
中 B-LOC
國 I-LOC
妹 O
子 O
###要丟進LSTM的數據###
X_train應該是長這樣[0, 1, 15, 24, 65, 102, 103, 54, 63]之類的,這裡代表每個字的index。
y_train應該是長這樣 [1, 2, 0, 0, 0, 3, 4, 0, 0]之類的,代表對應到的字的NE。
最後再把每個句子做個padding就能丟進LSTM了。
至於怎麼轉換成數據序列的,就請您自行研究研究process_data.py唄!
配置显存
https://www.jianshu.com/p/99fca5b7fd8a
==================================
使用预训练词向量
=================================
Keras 模型中使用预训练的词向量
Word2vec,为一群用来产生词嵌入的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示词对词之间的关系。该向量为神经网络之隐藏层。
https://zh.wikipedia.org/wiki/Word2vec
在这篇 在Keras模型中使用预训练的词向量 讲述了如何利用预先训练好的 GloVe 模型,本文基本大同小异。只写一些不同的地方,更想的可以看这篇文章。
总体思路就是给 Embedding 层提供一个 [ word_token : word_vector] 的词典来初始化向量,并且标记为不可训练。
解析 word2vec 模型,其中:
word2idx保存词语和 token 的对应关系,语料库 tokenize 时候需要。embeddings_matrix存储所有 word2vec 中所有向量的数组,用于初始化模型Embedding层
1 |
import numpy as np |
使用方法:
1 |
from keras.layers import Embedding EMBEDDING_DIM = 100 #词向量维度 embedding_layer = Embedding(len(embeddings_matrix), |
BI-LSTM and CRF using Keras的更多相关文章
- TensorFlow (RNN)深度学习 双向LSTM(BiLSTM)+CRF 实现 sequence labeling 序列标注问题 源码下载
http://blog.csdn.net/scotfield_msn/article/details/60339415 在TensorFlow (RNN)深度学习下 双向LSTM(BiLSTM)+CR ...
- NER(BiLSTM+CRF,Keras)
数据集为玻森命名实体数据. 目前代码流程跑通了,后续再进行优化. 项目地址:https://github.com/cyandn/practice/tree/master/NER 步骤: 数据预处理: ...
- End to End Sequence Labeling via Bi-directional LSTM CNNs CRF
来看看今日头条首席科学家的论文: End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF 使用LSTM方法进行序列标注,完成大规模标 ...
- 长短时记忆网络LSTM和条件随机场crf
LSTM 原理 CRF 原理 给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型.假设输出随机变量构成马尔科夫随机场(概率无向图模型)在标注问题应用中,简化成线性链条件随机场,对数线性判别 ...
- 【Python】keras使用LSTM拟合曲线
keras生成的网络结构如下图: 代码如下: from sklearn.preprocessing import MinMaxScaler from keras.models import Seque ...
- keras实例学习-双向LSTM进行imdb情感分类
源码:https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py 及keras中文文档 1. ...
- 用Keras搭建神经网络 简单模版(五)——RNN LSTM Regressor 循环神经网络
# -*- coding: utf-8 -*- import numpy as np np.random.seed(1337) import matplotlib.pyplot as plt from ...
- keras 自定义 custom 函数
转自: https://kexue.fm/archives/4493/,感谢分享! Keras是一个搭积木式的深度学习框架,用它可以很方便且直观地搭建一些常见的深度学习模型.在tensorflow出来 ...
- Keras 学习之旅(一)
软件环境(Windows): Visual Studio Anaconda CUDA MinGW-w64 conda install -c anaconda mingw libpython CNTK ...
随机推荐
- iOS - 开发中加载本地word/pdf文档说明
最近项目中要加载一个本地的word/pdf等文件比如<用户隐私政策><用户注册说明>,有两种方法加载 > 用QLPreviewController控制器实现 步骤 : & ...
- Android编译系统入门(二)
Android.mk的使用方法 在上一篇Android编译系统入门(一)中我们只要介绍了Android系统使用make命令默认编译的依赖树是droid,而droid是一个伪目标,它有两个先决条件dro ...
- ubuntu16.04 ROS环境下配置和运行SVO
ubuntu16.04 ROS环境下配置和运行SVO https://blog.csdn.net/nnUyi/article/details/78005552
- 网卡配置文件详解 用户管理与文件权限篇 文件与目录权限 软连接 tar解压命令 killall命令 linux防火墙 dns解析设置 计划任务crond服务 软件包安装 阿里云 yum源 安装
Linux系统基础优化及常用命令 Linux基础系统优化 引言没有,只有一张图. Linux的网络功能相当强悍,一时之间我们无法了解所有的网络命令,在配置服务器基础环境时,先了解下网络参数设定命令. ...
- {Django基础十之Form和ModelForm组件}一 Form介绍 二 Form常用字段和插件 三 From所有内置字段 四 字段校验 五 Hook钩子方法 六 进阶补充 七 ModelForm
Django基础十之Form和ModelForm组件 本节目录 一 Form介绍 二 Form常用字段和插件 三 From所有内置字段 四 字段校验 五 Hook钩子方法 六 进阶补充 七 Model ...
- [No0000141]Outlook,设置全局已读回执
Outlook,设置全局已读回执 文件->选项
- [No0000138]软件开发基础知识
1. 本文目的 本文目的在于,介绍软件开发的各种基础知识 以实现,看了之后,对于软件开发的很多领域的基础知识有所了解 如此在进行后续的真正的软件开发时,遇到各种细节知识,才会明白由来和背景知识 第 1 ...
- java 验证字符串是否包含中文字符
中文的模式:"[\\u4e00-\\u9fa5]|\\\\u" 例子: private static final Pattern p = Pattern.compile(" ...
- a mechanism for code reuse in single inheritance languages
php.net <?php class Base { public function sayHello() { echo 'Hello'; } } trait SayWorld { public ...
- Page13:跟踪问题、最优控制[Linear System Theory]
内容包含跟踪问题及其结构框图.内模原理.可跟踪条件 各种线性二次型最优控制问题指标含义