1126 Eulerian Path (25 分)
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)
Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).
Output Specification:
For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.
Sample Input 1:
7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6
Sample Output 1:
2 4 4 4 4 4 2
Eulerian
Sample Input 2:
6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6
Sample Output 2:
2 4 4 4 3 3
Semi-Eulerian
Sample Input 3:
5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3
Sample Output 3:
3 3 4 3 3
Non-Eulerian
题意:如果一个连通图的所有结点的度都是偶数,那么它就是Eulerian,如果除了了两个结点的度是奇数其他都是偶数,那么它就是Semi-Eulerian,否则就是Non-Eulerian
/**
* Copyright(c)
* All rights reserved.
* Author : Mered1th
* Date : 2019-02-28-14.12.44
* Description : A1126
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string>
#include<unordered_set>
#include<map>
#include<vector>
#include<set>
using namespace std;
;
vector<int> e[maxn];
bool vis[maxn]={false};
,n;
void dfs(int s){
vis[s]=true;
cnt++;
;i<=n;i++){
if(vis[i]==false && find(e[s].begin(),e[s].end(),i)!=e[s].end()){
dfs(i);
}
}
}
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("1.txt", "r", stdin);
#endif
int m,u,v;
scanf("%d%d",&n,&m);
;i<m;i++){
scanf("%d%d",&u,&v);
e[u].push_back(v);
e[v].push_back(u);
}
;
;i<=n;i++){
printf("%d",e[i].size());
==) even++;
if(i!=n) printf(" ");
else printf("\n");
}
dfs();
if(cnt==n && even==n){
printf("Eulerian");
}
&&cnt==n){
printf("Semi-Eulerian");
}
else printf("Non-Eulerian");
;
}
1126 Eulerian Path (25 分)的更多相关文章
- PAT甲级 1126. Eulerian Path (25)
1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...
- 1126. Eulerian Path (25)
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性
题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...
- PAT 1126 Eulerian Path[欧拉路][比较]
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
- PAT甲级——1126 Eulerian Path
我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...
- PAT 甲级 1126 Eulerian Path
https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...
- PAT 1126 Eulerian Path
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- 1126 Eulerian Path
题意:若图是连通图,且所有结点的度均为偶数,则称为Eulerian:若有且仅有两个结点的度为奇数,则称为semi-Eulerian.现给出一个图,要我们判断其是否为Eulerian,semi-Eule ...
- PTA 1126 Eulerian Path
无向连通图,输出每个顶点的度并判断Eulerian.Semi-Eulerian和Non-Eulerian这3种情况,我们直接记录每个点所连接的点,这样直接得到它的度,然后利用深度优先和visit数组来 ...
随机推荐
- Spring Boot 揭秘
SpringBoot基础 微服务 解决大一统的服务化架构的问题 代码冲突问题 交付复杂,影响面大 测试困难 微服务的好处 可扩展性 隔离性 灵活性,多语言多技术生态 微服务的挑战 保持微服务的互通性 ...
- jenkins安装教程
首先部署java环境 然后部署tomacat(部署之后无需开启tomcat服务) sudo wget -O /etc/yum.repos.d/jenkins.repo https://pkg.jenk ...
- Oracle sqlnet.ora配置
Oracle sqlnet.ora配置 sqlnet.ora的作用(官网指出的) www.2cto.com 1.限制客户端访问(如指定客户端域为不允许访问) 2.指定命名方法(local nami ...
- TypeScript 之 书写.d.ts文件
https://m.runoob.com/manual/gitbook/TypeScript/_book/doc/handbook/Writing%20Definition%20Files.html ...
- MySQL 的日期类型有5个,分别是: date、time、year、datetime、timestamp。
类型 字节 格式 用途 是否支持设置系统默认值 date 3 YYYY-MM-DD 日期值 不支持 time 3 HH:MM:SS 时间值或持续时间 不支持 year 1 YYYY 年份 不支持 da ...
- JFrame背景色设置
JFrame对象本身是包含Pane的,一般我们在往JFrame中添加组件时,都加在了ContentPane中,这个可以通过JFrame的成员方法getContentPane()取出来.所以如果设置JF ...
- ASP.NET中使用JSON方便实现前台与后台的数据交换
ASP.NET中使用JSON方便实现前台与后台的数据交换 发表于2014/9/13 6:47:08 8652人阅读 分类: ASP.NET Jquery extjs 一.前台向后台请求数据 在页面加 ...
- STM32 printf函数
/******************** (C) COPYRIGHT 2012 WildFire Team *************************** * 文件名 :usart1.c * ...
- 黄聪:微信公众平台开发OAuth2.0网页授权(转)
微信公众平台开发 OAuth2.0网页授权认证 网页授权获取用户基本信息 作者:方倍工作室 微信公众平台最近新推出微信认证,认证后可以获得高级接口权限,其中一个是OAuth2.0网页授权,很多朋友在使 ...
- 关于java分布式系统开关功能设计(服务升降级)
首先讲一下开关的由来,例如东京在6月18日做店庆促销活动,在交易下单环节,可能需要调用A.B.C三个接口来完成,但是其实A和B是必须的,C只是附加的功能(例如在下单的时候做一下推荐),可有可无,在平时 ...