BZOJ4034 [HAOI2015]树上操作 树链剖分
欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - BZOJ4034
题意概括
有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
题解
树链剖分。
然后对于子树修改,我们可以考虑dfs序。
树链剖分也是一种dfs序。
单点修改更简单,对于懒惰的我来说,这就是区间修改(少写了一个void 2333)
询问几乎是基础的树剖了,沿着树链往上走就可以了。
代码
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
typedef long long LL;
const int N=100005;
struct Gragh{
int cnt,y[N*2],nxt[N*2],fst[N];
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void add(int a,int b){
y[++cnt]=b,nxt[cnt]=fst[a],fst[a]=cnt;
}
}g;
int n,m,cnp=0;
int fa[N],son[N],size[N],depth[N],top[N],p[N],ap[N],outp[N];
LL v[N],t[N*4],add[N*4],w[N*4];
void Get_Gen_Info(int rt,int pre,int d){
size[rt]=1,fa[rt]=pre,depth[rt]=d,son[rt]=-1;
for (int i=g.fst[rt];i;i=g.nxt[i])
if (g.y[i]!=pre){
int s=g.y[i];
Get_Gen_Info(s,rt,d+1);
size[rt]+=size[s];
if (son[rt]==-1||size[s]>size[son[rt]])
son[rt]=s;
}
}
void Get_Top(int rt,int tp){
top[rt]=tp;
ap[p[rt]=++cnp]=rt;
if (son[rt]==-1){
outp[rt]=cnp;
return;
}
Get_Top(son[rt],tp);
for (int i=g.fst[rt];i;i=g.nxt[i]){
int s=g.y[i];
if (s!=fa[rt]&&s!=son[rt])
Get_Top(s,s);
}
outp[rt]=cnp;
}
void pushup(int rt){
int ls=rt<<1,rs=ls|1;
t[rt]=t[ls]+t[rs];
}
void build(int rt,int le,int ri){
w[rt]=ri-le+1;
add[rt]=0;
if (le==ri){
t[rt]=v[ap[le]];
return;
}
int mid=(le+ri)>>1,ls=rt<<1,rs=ls|1;
build(ls,le,mid);
build(rs,mid+1,ri);
pushup(rt);
}
void pushdown(int rt){
int ls=rt<<1,rs=ls|1;
LL &a=add[rt];
if (a){
t[ls]+=w[ls]*a,add[ls]+=a;
t[rs]+=w[rs]*a,add[rs]+=a;
a=0;
}
}
void update(int rt,int le,int ri,int xle,int xri,LL d){
if (le>xri||ri<xle)
return;
if (xle<=le&&ri<=xri){
t[rt]+=w[rt]*d,add[rt]+=d;
return;
}
pushdown(rt);
int mid=(le+ri)>>1,ls=rt<<1,rs=ls|1;
update(ls,le,mid,xle,xri,d);
update(rs,mid+1,ri,xle,xri,d);
pushup(rt);
}
LL query(int rt,int le,int ri,int xle,int xri){
if (le>xri||ri<xle)
return 0;
if (xle<=le&&ri<=xri)
return t[rt];
pushdown(rt);
int mid=(le+ri)>>1,ls=rt<<1,rs=ls|1;
return query(ls,le,mid,xle,xri)+query(rs,mid+1,ri,xle,xri);
}
LL Tquery(int a){
int f=top[a];
LL ans=0;
while (a){
ans+=query(1,1,n,p[f],p[a]);
a=fa[f],f=top[a];
}
return ans;
}
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
scanf("%lld",&v[i]);
g.clear();
for (int i=1,a,b;i<n;i++){
scanf("%d%d",&a,&b);
g.add(a,b);
g.add(b,a);
}
Get_Gen_Info(1,0,0);
Get_Top(1,1);
build(1,1,n);
for (int i=1;i<=m;i++){
int op,a,b;
scanf("%d",&op);
if (op==1){
scanf("%d%d",&a,&b);
update(1,1,n,p[a],p[a],b);
}
if (op==2){
scanf("%d%d",&a,&b);
update(1,1,n,p[a],outp[a],b);
}
if (op==3){
scanf("%d",&a);
printf("%lld\n",Tquery(a));
}
}
return 0;
}
BZOJ4034 [HAOI2015]树上操作 树链剖分的更多相关文章
- bzoj4034[HAOI2015]树上操作 树链剖分+线段树
4034: [HAOI2015]树上操作 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 6163 Solved: 2025[Submit][Stat ...
- BZOJ4034[HAOI2015]树上操作——树链剖分+线段树
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...
- bzoj4034 [HAOI2015]树上操作——树链剖分
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4034 树剖裸题: 一定要注意 long long !!! update 的时候别忘了 pus ...
- 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树
[BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...
- bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树
4034: [HAOI2015]树上操作 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4352 Solved: 1387[Submit][Stat ...
- P3178 [HAOI2015]树上操作 树链剖分
这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...
- bzoj 4034: [HAOI2015]树上操作——树链剖分
Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...
- BZOJ 4034[HAOI2015]树上操作(树链剖分)
Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点 ...
- [HAOI2015]树上操作-树链剖分
#include<bits/stdc++.h> using namespace std; const int maxn = 1e6+5; #define mid ((l+r)>> ...
随机推荐
- CSS魔法(三)浮动、相对定位、绝对定位
浮动 为何需要浮动? 浮动float最开始出现的意义是为了让文字环绕图片而已,但人们发现,如果想要三个块级元素并排显示,都给它们加个float来得会比较方便. 浮动问题? 为何要清除浮动? 很多情况下 ...
- POJ1258 Agri-Net【最小生成树】
题意: 有n个农场,已知这n个农场都互相相通,有一定的距离,现在每个农场需要装光纤,问怎么安装光纤能将所有农场都连通起来,并且要使光纤距离最小,输出安装光纤的总距离. 思路: 又是一个最小生成树,因为 ...
- SpringBoot整合日志
Java日志 日志的接口层.抽象层 日志的实现 JCL(Jakarta Commons Logging) SLF4J(Simple Logging Facade for Java) Jboss-Log ...
- Java 集合系列0、概述
概述: Collection 框架中 从最上层的核心主干可以看到:Iterator.Collection.Map 三个接口(拓展思考1)1.Collection 接口:主要包括了集合中的一些常用操作, ...
- Spark学习之Spark安装
Spark安装 spark运行环境 spark是Scala写的,运行在jvm上,运行环境为java7+ 如果使用Python的API ,需要使用Python2.6+或者Python3.4+ Spark ...
- 虚拟机Ubuntu 18.04安装RabbitMQ 3.7.9
Windows 10家庭中文版,VirtualBox,Ubuntu 18.04,Rabbitmq 3.7.9,Erlang/OTP 20 [erts-9.2], 在虚拟机上装好了Ubuntu,写了一个 ...
- 最全的基于MFC的ActiveX控件开发教程
浏览器插件之ActiveX开发(一) 一般的Web应用对于浏览器插件能不使用的建议尽量不使用,因为其涉及到安全问题以及影响用户安装(或自动下载注册安装)体验问题.在有特殊需求(如涉及数据安全的金融业务 ...
- 学习笔记(一)--->《Java 8编程官方参考教程(第9版).pdf》:第一章到六章学习笔记
注:本文声明事项. 本博文整理者:刘军 本博文出自于: <Java8 编程官方参考教程>一书 声明:1:转载请标注出处.本文不得作为商业活动.违者本人不负法律责任.违法者自负一切法律责任. ...
- Coursera台大机器学习技法课程笔记07-Blending and Bagging
这一节讲如何将得到的feature或hypothesis组合起来用于预测. 1. 林老师给出了几种方法 在选择g时,需要选择一个很强的g来确保Eval最小,但如果每个g都很弱该怎么办呢 这个时候可以选 ...
- ubuntu预装的是vim tiny版本
可以安装vim full版本,在full版本下键盘正常,安装好后同样使用vi命令.安装vim: ubuntu预装的是vim tiny版本,而需要的是vim full版本.执安装vim full版本:$ ...