LeetCode(46):全排列
Medium!
题目描述:
给定一个没有重复数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
解题思路:
这道题是求全排列问题,给的输入数组没有重复项,这跟之前的那道Combinations 组合项 和类似,解法基本相同,但是不同点在于那道不同的数字顺序只算一种,是一道典型的组合题,而此题是求全排列问题,还是用递归DFS来求解。这里我们需要用到一个visited数组来标记某个数字是否访问过,然后DFS递归函数循环应从头开始,而不是从level开始,这是和Combinations 组合项 不同的地方,其余思路大体相同。
C++解法一:
class Solution {
public:
vector<vector<int> > permute(vector<int> &num) {
vector<vector<int> > res;
vector<int> out;
vector<int> visited(num.size(), );
permuteDFS(num, , visited, out, res);
return res;
}
void permuteDFS(vector<int> &num, int level, vector<int> &visited, vector<int> &out, vector<vector<int> > &res) {
if (level == num.size()) res.push_back(out);
else {
for (int i = ; i < num.size(); ++i) {
if (visited[i] == ) {
visited[i] = ;
out.push_back(num[i]);
permuteDFS(num, level + , visited, out, res);
out.pop_back();
visited[i] = ;
}
}
}
}
};
还有一种递归的写法,更简单一些,这里是每次交换num里面的两个数字,经过递归可以生成所有的排列情况,代码如下。
C++解法二:
class Solution {
public:
vector<vector<int> > permute(vector<int> &num) {
vector<vector<int> > res;
permuteDFS(num, , res);
return res;
}
void permuteDFS(vector<int> &num, int start, vector<vector<int> > &res) {
if (start >= num.size()) res.push_back(num);
for (int i = start; i < num.size(); ++i) {
swap(num[start], num[i]);
permuteDFS(num, start + , res);
swap(num[start], num[i]);
}
}
};
最后再来看一种方法,这种方法是CareerCup书上的方法,也挺不错的,这道题是思想是这样的:
当n=1时,数组中只有一个数a1,其全排列只有一种,即为a1
当n=2时,数组中此时有a1a2,其全排列有两种,a1a2和a2a1,那么此时我们考虑和上面那种情况的关系,我们发现,其实就是在a1的前后两个位置分别加入了a2
当n=3时,数组中有a1a2a3,此时全排列有六种,分别为a1a2a3, a1a3a2, a2a1a3, a2a3a1, a3a1a2, 和 a3a2a1。那么根据上面的结论,实际上是在a1a2和a2a1的基础上在不同的位置上加入a3而得到的。
_ a1 _ a2 _ : a3a1a2, a1a3a2, a1a2a3
_ a2 _ a1 _ : a3a2a1, a2a3a1, a2a1a3
C++解法三:
class Solution {
public:
vector<vector<int> > permute(vector<int> &num) {
if (num.empty()) return vector<vector<int> >(, vector<int>());
vector<vector<int> > res;
int first = num[];
num.erase(num.begin());
vector<vector<int> > words = permute(num);
for (auto &a : words) {
for (int i = ; i <= a.size(); ++i) {
a.insert(a.begin() + i, first);
res.push_back(a);
a.erase(a.begin() + i);
}
}
return res;
}
};
LeetCode(46):全排列的更多相关文章
- 每日一题-——LeetCode(46)全排列
题目描述: 给定一个没有重复数字的序列,返回其所有可能的全排列.输入: [1,2,3]输出:[ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ...
- Java实现 LeetCode 46 全排列
46. 全排列 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2] ...
- [leetcode] 46. 全排列(Java)
46. 全排列 这题我们可以借用31. 下一个排列写的nextPermutation函数来做,稍微改造一下即可 注意要先给nums排个序 class Solution { // 当没有下一个排列时re ...
- leetcode 46. 全排列 及 47. 全排列 II
46. 全排列 问题描述 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3 ...
- [LeetCode] 46. 全排列(回溯)
###题目 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], ...
- LeetCode 46 全排列
题目: 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3 ...
- LeetCode 46. 全排列(Permutations)
题目描述 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [ ...
- LeetCode 46——全排列
1. 题目 2. 解答 给定一个序列,序列中的任意一个数字都可以作为全排列的最后一位.然后,其余位置元素的确定便是剩余元素的一个全排列,也就是一个子问题. 例子中 [1, 2, 3] 的全排列,最后一 ...
- leetcode 46 全排列 (python)
给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3]输出:[ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]] ...
- 力扣Leetcode 46. 全排列
全排列 给定一个 没有重复 数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], ...
随机推荐
- plot与legend画图与图例
画图与图例: legend(x, y = NULL, legend, fill = NULL, col = par("col"), border = "black&quo ...
- 条理清晰的搭建SSH环境之添加所需jar包
一.首先介绍要添加框架环境: JUnit Struts2 Hibernate Spring (1)配置JUnit /**-------------------------添加JUnit-------- ...
- JavaSE学习总结(五)——封装,继承,多态很简单
java面向对象的三大特性是:封装.继承与多态,是面向对象编程的核心. 一.封装 简单说封装就是将同一类事物的特性与功能包装在一起,对外暴露调用的接口. 封装:封装也称信息隐藏,是指利用抽象数据类型把 ...
- centOS7环境下安装jdk1.8
首先下载jdk1.8 去官网下载jdk:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151. ...
- filebeat多个key
filebeat.prospectors:- type: log paths: - D:\logs\iis\W3SVC2\*.log exclude_lines: ['^#'] multiline: ...
- HDU - 5117 Fluorescent(状压dp+思维)
原题链接 题意 有N个灯和M个开关,每个开关控制着一些灯,如果按下某个开关,就会让对应的灯切换状态:问在每个开关按下与否的一共2^m情况下,每种状态下亮灯的个数的立方的和. 思路1.首先注意到N< ...
- Ubuntu 16.04及以上 安装/卸载 Docker-CE
前言 本文仅针对Ubuntu 18.10.18.04.16.04的x86_64的OS与架构下的Docker-CE的安装 卸载老板本 如果已安装,请卸载它们: sudo apt-get remove d ...
- 夏令时(DST)测试
夏令时测试是比较小众的测试,主要针对在有夏令时的国家使用的软件,如果你接触到了这方面的测试,说明你在挣国外的钱:). 话不多说,先来介绍下什么是夏令时: 夏时制,夏时令(Daylight Sa ...
- [Offer收割]编程练习赛9,10
题目1 : 闰秒 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 计算机系统中使用的UTC时间基于原子钟,这种计时方式同“地球自转一周是24小时”的计时方式有微小的偏差. ...
- JavaScript之12306自动刷新车票[待完善]
function refresh(){ var search_btn = document.getElementById("query_ticket"); var result_t ...