linux系统内核流转浅析
SJTUBEAR 原创作品转载请注明出处 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000
我们通过简单地内核来模拟一下linux的系统调度,代码如下:
/*
* linux/mykernel/mymain.c
*
* Kernel internal my_start_kernel
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h> #include "mypcb.h" tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = ; void my_process(void); void __init my_start_kernel(void)
{
int pid = ;
int i;
/* Initialize process 0*/
task[pid].pid = pid;
task[pid].state = ;/* -1 unrunnable, 0 runnable, >0 stopped */
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-];
task[pid].next = &task[pid];
/*fork more process */
for(i=;i<MAX_TASK_NUM;i++)
{
memcpy(&task[i],&task[],sizeof(tPCB));
task[i].pid = i;
task[i].state = -;
task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-];
task[i].next = task[i-].next;
task[i-].next = &task[i];
}
/* start process 0 by task[0] */
pid = ;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */
"pushl %1\n\t" /* push ebp */
"pushl %0\n\t" /* push task[pid].thread.ip */
"ret\n\t" /* pop task[pid].thread.ip to eip */
"popl %%ebp\n\t"
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
);
}
void my_process(void)
{
int i = ;
while()
{
i++;
if(i% == )
{
printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
if(my_need_sched == )
{
my_need_sched = ;
my_schedule();
}
printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
}
}
}
这是我们模拟kernel的主程序mymain.c/
linux启动后,系统初始化完成,mymain.c开始运行。
通过将my_process的地址传入结构体中的ip,再将ip压栈后ret,将地址pop给eip,将系统引导至myprocess开始运行。
其中while1,保证kernel死循环。
每执行10000000次检查全局变量my_need_sche,通过my_schedule()来进行进程的切换。
而对于my_need_sche的修改和my_schedule()函数具体的实现是在时钟中断中模拟进行的。
contributor
RawBlameHistory lines ( sloc) 2.452 kb
/*
* linux/mykernel/myinterrupt.c
*
* Kernel internal my_timer_handler
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h> #include "mypcb.h" extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = ; /*
* Called by timer interrupt.
* it runs in the name of current running process,
* so it use kernel stack of current running process
*/
void my_timer_handler(void)
{
#if 1
if(time_count% == && my_need_sched != )
{
printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
my_need_sched = ;
}
time_count ++ ;
#endif
return;
} void my_schedule(void)
{
tPCB * next;
tPCB * prev; if(my_current_task == NULL
|| my_current_task->next == NULL)
{
return;
}
printk(KERN_NOTICE ">>>my_schedule<<<\n");
/* schedule */
next = my_current_task->next;
prev = my_current_task;
if(next->state == )/* -1 unrunnable, 0 runnable, >0 stopped */
{
/* switch to next process */
asm volatile(
"pushl %%ebp\n\t" /* save ebp */
"movl %%esp,%0\n\t" /* save esp */
"movl %2,%%esp\n\t" /* restore esp */
"movl $1f,%1\n\t" /* save eip */
"pushl %3\n\t"
"ret\n\t" /* restore eip */
"1:\t" /* next process start here */
"popl %%ebp\n\t"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
}
else
{
next->state = ;
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
/* switch to new process */
asm volatile(
"pushl %%ebp\n\t" /* save ebp */
"movl %%esp,%0\n\t" /* save esp */
"movl %2,%%esp\n\t" /* restore esp */
"movl %2,%%ebp\n\t" /* restore ebp */
"movl $1f,%1\n\t" /* save eip */
"pushl %3\n\t"
"ret\n\t" /* restore eip */
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}
我们看到,每一千次中断,就模拟切换一次进程。
通过对当前环境的保存以及建立新的堆栈,来完成对进程的切换。
实验结果:
通过实验结果我们可以得知,就是这样通过使用堆栈,对进程的数据进行封存,并建立新的堆栈开启新的进程的过程,使得进程可以自由的切换。
通过对ret指令,将下一条进程的eip首地址赋eip,完成进程的调度!
linux系统内核流转浅析的更多相关文章
- Linux模块机制浅析
Linux模块机制浅析 Linux允许用户通过插入模块,实现干预内核的目的.一直以来,对linux的模块机制都不够清晰,因此本文对内核模块的加载机制进行简单地分析. 模块的Hello World! ...
- Linux系统内核制作和内核模块的基础
Linux系统内核制作 1.清除原有配置与中间文件 x86: make distclean arm: make distclean 2.配置内核 x86: make menuconfig arm ...
- Linux 设备模型浅析之 uevent 篇(2)
Linux 设备模型浅析之 uevent 篇 本文属本人原创,欢迎转载,转载请注明出处.由于个人的见识和能力有限,不可能面 面俱到,也可能存在谬误,敬请网友指出,本人的邮箱是 yzq.seen@gma ...
- 五年26个版本:Linux系统内核全程回顾
Phoronix.com今天将他们对Linux系统的研究发挥到了极致:从2005年年中的2.6.12,到正在开发中的2.6.37,五年多来的26个Linux内核版本来了个“群英荟萃”! 完成如此庞大规 ...
- linux内核cfs浅析
linux调度器的一般原理请参阅<linux进程调度浅析>.之前的调度器cfs之前的linux调度器一般使用用户设定的静态优先级,加上对于进程交互性的判断来生成动态优先级,再根据动态优先级 ...
- Linux 系统内核的调试
http://www.ibm.com/developerworks/cn/linux/l-kdb/index.html 本文将首先介绍 Linux 内核上的一些内核代码监视和错误跟踪技术,这些调试和跟 ...
- Linux模块机制浅析_转
Linux模块机制浅析 转自:http://www.cnblogs.com/fanzhidongyzby/p/3730131.htmlLinux允许用户通过插入模块,实现干预内核的目的.一直以来,对l ...
- Linux进程IPC浅析[进程间通信SystemV共享内存]
Linux进程IPC浅析[进程间通信SystemV共享内存] 共享内存概念,概述 共享内存的相关函数 共享内存概念,概述: 共享内存区域是被多个进程共享的一部分物理内存 多个进程都可把该共享内存映射到 ...
- 【ARM-Linux开发】Linux模块机制浅析
Linux模块机制浅析 Linux允许用户通过插入模块,实现干预内核的目的.一直以来,对linux的模块机制都不够清晰,因此本文对内核模块的加载机制进行简单地分析. 模块的Hello World! ...
随机推荐
- centos mysql开启远程访问
登录MySQL: mysql -u root -p db; 如需修改密码,第一次: mysqladmin -u root password NEWPASSWORD 已设置过: mysqladmi ...
- 4种解决json日期格式问题的办法
4种解决json日期格式问题的办法 开发中有时候需要从服务器端返回json格式的数据,在后台代码中如果有DateTime类型的数据使用系统自带的工具类序列化后将得到一个很长的数字表示日期数据,如下 ...
- redis3.0常用命令
1.服务器启动 1)快捷启动 $redis-server 2)指定配置文件启动 $redis-server redis.conf 2.客服端启动 1)快捷无密码启动 $redis-cli 2)有密码和 ...
- C Primer Plus 学习体会
本月刚刚开始学习<C primer plus>,之前课上草草学过一遍,讲到指针就结束了.现在重新开始看感觉难度不大只是刚开始接触有些语言细节比较琐碎.学习这一周的体会如下: 诸多前辈推荐的 ...
- 如何在ASP.NET Core中实现CORS跨域
注:下载本文的完整代码示例请访问 > How to enable CORS(Cross-origin resource sharing) in ASP.NET Core 如何在ASP.NET C ...
- Ajax跨域实现
Ajax Ajax,Asynchronus JavaScript and XML,字母意思:异步的 JavaScript 和 XML,是指一种创建交互式网页应用的网页开发技术.用于异步地去获取XML作 ...
- 为什么要用 WebSocket
使用传统的 HTTP 轮询或者长连接的方式也可以实现类似服务器推送的效果,但是这类方式都存在资源消耗过大或推送延迟等问题.而 WebSocket 直接使用 TCP 连接保持全双工的传输,可以有效地减少 ...
- PHP 的 foreach
foreach 可以 针对 string 操作,不过会生成一个警告,并跳过该 expression, 举例: $ids = '123'; foreach ($ids as $item){ print_ ...
- 从linux0.11中起动部分代码看汇编调用c语言函数
上一篇分析了c语言的函数调用栈情况,知道了c语言的函数调用机制后,我们来看一下,linux0.11中起动部分的代码是如何从汇编跳入c语言函数的.在LINUX 0.11中的head.s文件中会看到如下一 ...
- grails 优缺点分析
Grails是一套用于快速Web应用开发的开源框架,它基于Groovy编程语言,并构建于Spring.Hibernate等开源框架之上,是一个高生产力一站式框架. 易于使用的基于Hibernate的对 ...