leetcode—word ladder II
1.题目描述
Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:Only one letter can be changed at a timeEach intermediate word must exist in the dictionaryFor example,Given:start = "hit"end = "cog"dict = ["hot","dot","dog","lot","log"]Return[["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
2.解题思路
我一看到这个题目就觉得类似于最小生成树,应该用贪心算法来做,贪心算法的思路如下:
从start串出发,找出一次变换可以得到的string串的集合S1,如果集合S1中包含有end串,那么搜索结束,否则,搜索两步之内能到达的串的集合S2,同样判断两步之内能到达的串集合中是否有end串,以此类推,最终找到最短路径。另外,路径保存需要单独设置一个数据结构,
最终算法描述如下(类最小生成树):
- 将字典dict中的所有字符串分为左右两侧,一侧为leftside=start(实际编码不需存储),一侧为rightside=(dict-start),当前距start最远的节点,比如说从start i 步之内可达的节点集合curStep = start (因为初始是0步可达)。
- 计算nextStep,也就是 i+1 步可达的字符串集合,最简单的思路就是下面的思路,遍历curStep 遍历rightside,逐个比较,必然能找到nextStep,找到nextStep之后curStep 变成了nextStep,将nextStep 中的字符串从rightside里面抹去,nextStep清空继续寻找直至找到的nextStep或rightside为空(表示没有路径到end),或者end被发现。
于是有了下面的这份代码:
class Solution {public:vector<vector<string> > findLadders(string start, string end, unordered_set<string> &dict) {// end typing your C/C++ solution below// DO NOT write int main() function//areslipan@163.commap<string,vector<string> > path;unordered_set<string>leftside;unordered_set<string>rightside=dict;rightside.insert(start);rightside.insert(end);leftside.insert(start);rightside.erase(start);unordered_set<string>curStep;unordered_set<string>nextStep;curStep.insert(start);while(curStep.find(end)==curStep.end()&&!rightside.empty()){unordered_set<string>::iterator iter_us_cur;unordered_set<string>::iterator iter_us_right;for(iter_us_cur=curStep.begin();iter_us_cur!=curStep.end();++iter_us_cur){for(iter_us_right=rightside.begin();iter_us_right!=rightside.end();++iter_us_right){if(isCvtable(*iter_us_cur,*iter_us_right)){if(path.find(*iter_us_cur)!=path.end()){path[*iter_us_cur].push_back(*iter_us_right);}else{vector<string> emptyV;path[*iter_us_cur]=emptyV;path[*iter_us_cur].push_back(*iter_us_right);}nextStep.insert(*iter_us_right);}}}if(nextStep.empty())break;for(iter_us_right=nextStep.begin();iter_us_right!=nextStep.end();++iter_us_right){rightside.erase(*iter_us_right);}curStep = nextStep;nextStep.clear();}vector<vector<string> > result;vector<string> temp;if(curStep.find(end)!=curStep.end()){output(path,start,end,result,temp);}return result;}bool isCvtable(string str1,string str2){//cout<<"isCvtable: "<<str1<<str2<<endl;if(str1.length()!=str2.length()){return false;}int count=0;for(int i = 0;i<str1.length();++i){if(str1[i]!=str2[i])count++;if(count>1)return false;}return count==1;}void output(map<string,vector<string> >&path,string start,string end,vector<vector<string> >&result,vector<string> & temp){temp.push_back(start);if(start==end){result.push_back(temp);return;}vector<string>::iterator iter_v;for(iter_v=path[start].begin();iter_v!=path[start].end();++iter_v){output(path,*iter_v,end,result,temp);temp.pop_back();}}};
提交online judge之后,小数据集没问题,大数据集却TLE了,分析了一下,主要是从curStep求nextStep的过程太耗时,我这个是O(N2)的时间复杂度,结果如下:
挂掉的这个案例大概有3000个词,很大,分析了一下,题目给的参数是unordered_set是有用意的,unordered_set实际底层是个hash表,所以能够常数时间索引一个字符串,基于这个思路,在已知curStep、rightside求nextStep的过程中:
对每一个curStep中的字符串,假设长度为M,那么它的每位有25种变化,也就是每个单词有25*M中变化,那么时间复杂度就变成了O(MN),单词长度一般不会太大,所以这个是个线性的算法,分析完毕,我开始着手写算法:
class Solution {public:vector<vector<string> > findLadders(string start, string end, unordered_set<string> &dict) {// end typing your C/C++ solution below// DO NOT write int main() function//areslipan@163.commap<string,vector<string> > path;unordered_set<string>rightside=dict;rightside.erase(start);unordered_set<string>curStep;unordered_set<string>nextStep;curStep.insert(start);while(curStep.find(end)==curStep.end()&&!rightside.empty()){unordered_set<string>::iterator iter_us_cur;for(iter_us_cur=curStep.begin();iter_us_cur!=curStep.end();++iter_us_cur){string temp;for(int i=0;i<(*iter_us_cur).length();++i){for(int j = 0;j<26;j++){temp = *iter_us_cur;if(temp[i]!=('a'+j)){temp[i] = ('a'+j);}if(rightside.count(temp)==1){nextStep.insert(temp);if(path.find(*iter_us_cur)==path.end()){vector<string> emptyV;path.insert(make_pair(*iter_us_cur,emptyV));}path[*iter_us_cur].push_back(temp);}}}}if(nextStep.empty())break;unordered_set<string>::iterator iter_set;for(iter_set=nextStep.begin();iter_set!=nextStep.end();++iter_set){rightside.erase(*iter_set);}curStep = nextStep;nextStep.clear();}vector<vector<string> > result;vector<string> temp;if(curStep.find(end)!=curStep.end()){output(path,start,end,result,temp);}return result;}void output(map<string,vector<string> >&path,string start,string end,vector<vector<string> >&result,vector<string> & temp){temp.push_back(start);if(start==end){result.push_back(temp);return;}vector<string>::iterator iter_v;for(iter_v=path[start].begin();iter_v!=path[start].end();++iter_v){output(path,*iter_v,end,result,temp);temp.pop_back();}}};
结果出来的一瞬间很美妙:
另外,输出结果的方式也有改进的余地,如图所示,程序中的path实际是这么一张图,实际就是一张邻接表。
我的算法是从start开始深度搜索,直至找到end,当搜索到的最后一个节点不是end的时候其实都是无效搜索(而且比重很大),所以可以把上述这幅图反过来,然后从end开始反向搜索,以空间换时间。
leetcode—word ladder II的更多相关文章
- [leetcode]Word Ladder II @ Python
[leetcode]Word Ladder II @ Python 原题地址:http://oj.leetcode.com/problems/word-ladder-ii/ 参考文献:http://b ...
- LeetCode :Word Ladder II My Solution
Word Ladder II Total Accepted: 11755 Total Submissions: 102776My Submissions Given two words (start ...
- LeetCode: Word Ladder II 解题报告
Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation s ...
- [LeetCode] Word Ladder II 词语阶梯之二
Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...
- LeetCode: Word Ladder II [127]
[题目] Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) ...
- [LeetCode] Word Ladder II
Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...
- LeetCode:Word Ladder I II
其他LeetCode题目欢迎访问:LeetCode结题报告索引 LeetCode:Word Ladder Given two words (start and end), and a dictiona ...
- [Leetcode Week5]Word Ladder II
Word Ladder II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/word-ladder-ii/description/ Descripti ...
- 【leetcode】Word Ladder II
Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation ...
随机推荐
- [machine learning] Loss Function view
[machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function? ...
- The 11th Zhejiang Provincial Collegiate Programming Contest->Problem A:A - Pokemon Master
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3776 题意:比较两组数据的总和大小. #include <iostr ...
- C#一个简单下载程序实例(可用于更新)
运行时的界面 using System; using System.Collections.Generic; using System.ComponentModel; using System.Dat ...
- EdasStudio 开发工具用户手册
EdasStudio 开发工具用户手册 Edas 开发组2015-8-14 1. 下载安装插件 EdasStudio是EDAS的开发工具,是一个Eclipse Plugins,打开Eclipse的He ...
- Android ActionBar隐藏修改图标和标题
有时候在一些子页面或者内容页面,不需要显示ActionBar的标题栏图标.可用如下方式进行设置. 首先获取到ActionBar对象 ActionBar actionBar=getActionBar() ...
- windows下使用远程工具登录虚拟机上的Linux、访问虚拟机上的服务 、端口转发、win7 telnet登陆虚拟机
首先要清楚virtual box如何设置端口转发: 一篇文章: 如何使用VirtualBox进行端口转发 由于默认的方式是用NAT来做虚拟机网络的,因此如果从外网想访问虚拟机的应用会比较麻烦.以前一直 ...
- js快速打印一个五分制(五颗星)的评分情况
1.函数 下面这个函数实现了在html页面中快速打印一个五分制(五颗星)的评分情况: function getRating(rating) { if(rating > 5 || rating & ...
- bzoj1003: [ZJOI2006]物流运输
dp+最短路.暴力枚举就可以了.O(n3logn).样例中m=n然后测样例过了.然后 54行习惯性的dis[n]然后就WA了!!!. #include<cstdio> #include&l ...
- 禅道,然之和蝉知入驻VM Depot
Posted on 四月 21, 2015 by 陈阳 近日, 易软天创与微软开放技术合作,在虚拟镜像中国站点vmdepot.msopentech.cn上成功部署易软天创的集成管理环境,为希望快速基于 ...
- 剑指Offer:互为变位词
// 判断两个单词是否互为变位词: 如果两个单词中的字母相同,并且每个字母出现的次数也相同, 那么这两个单词互为变位词 #include <stdio.h> #include <st ...


