Frogs

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=5514

Description

There are m stones lying on a circle, and n frogs are jumping over them.
The stones are numbered from 0 to m−1 and the frogs are numbered from 1 to n. The i-th frog can jump over exactly ai stones in a single step, which means from stone j mod m to stone (j+ai) mod m (since all stones lie on a circle).

All frogs start their jump at stone 0, then each of them can jump as many steps as he wants. A frog will occupy a stone when he reach it, and he will keep jumping to occupy as much stones as possible. A stone is still considered ``occupied" after a frog jumped away.
They would like to know which stones can be occupied by at least one of them. Since there may be too many stones, the frogs only want to know the sum of those stones' identifiers.

Under two situations the player could score one point.

⋅1. If you touch a buoy before your opponent, you will get one point. For example if your opponent touch the buoy #2 before you after start, he will score one point. So when you touch the buoy #2, you won't get any point. Meanwhile, you cannot touch buoy #3 or any other buoys before touching the buoy #2.

⋅2. Ignoring the buoys and relying on dogfighting to get point.
If you and your opponent meet in the same position, you can try to
fight with your opponent to score one point. For the proposal of game
balance, two players are not allowed to fight before buoy #2 is touched by anybody.

There are three types of players.

Speeder:
As a player specializing in high speed movement, he/she tries to avoid
dogfighting while attempting to gain points by touching buoys.
Fighter:
As a player specializing in dogfighting, he/she always tries to fight
with the opponent to score points. Since a fighter is slower than a
speeder, it's difficult for him/her to score points by touching buoys
when the opponent is a speeder.
All-Rounder: A balanced player between Fighter and Speeder.

There will be a training match between Asuka (All-Rounder) and Shion (Speeder).
Since the match is only a training match, the rules are simplified: the game will end after the buoy #1 is touched by anybody. Shion is a speed lover, and his strategy is very simple: touch buoy #2,#3,#4,#1 along the shortest path.

Asuka is good at dogfighting, so she will always score one point by dogfighting with Shion, and the opponent will be stunned for T seconds after dogfighting.
Since Asuka is slower than Shion, she decides to fight with Shion for
only one time during the match. It is also assumed that if Asuka and
Shion touch the buoy in the same time, the point will be given to Asuka
and Asuka could also fight with Shion at the buoy. We assume that in
such scenario, the dogfighting must happen after the buoy is touched by
Asuka or Shion.

The speed of Asuka is V1 m/s. The speed of Shion is V2 m/s. Is there any possibility for Asuka to win the match (to have higher score)?

Input

There are multiple test cases (no more than 20), and the first line contains an integer t,
meaning the total number of test cases.

For each test case, the first line contains two positive integer n and m - the number of frogs and stones respectively (1≤n≤104, 1≤m≤109).

The second line contains n integers a1,a2,⋯,an, where ai denotes step length of the i-th frog (1≤ai≤109)

Output

For each test case, you should print first the identifier of the test case and then the sum of all occupied stones' identifiers.

Sample Input

3
2 12
9 10
3 60
22 33 66
9 96
81 40 48 32 64 16 96 42 72

Sample Output

Case #1: 42
Case #2: 1170
Case #3: 1872

HINT

题意

有一堆青蛙,一开始都在0点,然后有一堆圈成一圈的石子,石子的编号是从0-m-1的

然后青蛙只能顺时针跳,每个青蛙可以一次跳a[i]格,然后所有青蛙都这样一直跳下去

然后问你,这些青蛙踩过的石子的编号和是多少?

题解:

首先,对于第i只青蛙,他跳过的格子,一定是k*gcd(a[i],m)这种的

如果m小一点,我们就可以直接暴力了

当时m太大了,我们就分解m的因数之后,对于每个因数做暴力就好了

每个因数T的贡献是 for(int i=1;i<=M/T;i++)ans += M*i;

然后优化一下就好了,对于部分加多了的因数,我们后面用容斥搞一搞就行了

代码

#include<iostream>
#include<stdio.h>
#include<cstring>
#include<algorithm>
#include<math.h>
using namespace std;
#define maxn 10005
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
//每个青蛙,可以跳到gcd(m,a[i])*k的位置
int ppp[maxn];
int num[maxn],vis[maxn];
int main()
{
int tt;scanf("%d",&tt);
for(int cas=;cas<=tt;cas++)
{
int n,m;
int cnt = ;
memset(vis,,sizeof(vis));
memset(num,,sizeof(num));
scanf("%d%d",&n,&m);
for(int i=;i<=sqrt(m);i++)//把因子全部筛出来
{
if(m%i==)
{
ppp[cnt++]=i;
if(i*i!=m)
ppp[cnt++]=m/i;
}
}
sort(ppp,ppp+cnt);
for(int i=;i<n;i++)
{
int x;scanf("%d",&x);
int kk = gcd(x,m);
for(int j=;j<cnt;j++)
if(ppp[j]%kk==)//说明这个因子的所有,都是可以被跳到的位置
vis[j]=;
}
vis[cnt-]=;//显然 m是不可能被跳到的
long long ans = ;
for(int i = ; i < cnt; i++)
{
if(vis[i] != num[i])
{
int t = (m-)/ppp[i];
ans += (long long)t*(t+)/ * ppp[i] * (vis[i]-num[i]);
//容斥一波
//一开始vis[i] - num[i] = 1的
//对于每个因数,如果重复计算了,在之后,减去就好了
t = vis[i] - num[i];
for(int j = i; j < cnt; j++)
if(ppp[j]%ppp[i] == )
num[j] += t;
}
}
printf("Case #%d: %lld\n",cas,ans);
}
}

HDU 5514 Frogs 容斥定理的更多相关文章

  1. hdu 5514 Frogs(容斥)

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  2. hdu 5514 Frogs 容斥思想+gcd 银牌题

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  3. HDU - 4135 Co-prime 容斥定理

    题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...

  4. ACM-ICPC 2015 沈阳赛区现场赛 F. Frogs && HDU 5514(容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意:有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过xi个石子.问所 ...

  5. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. HDU 1796How many integers can you find(简单容斥定理)

    How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  7. HDU 4135 Co-prime 欧拉+容斥定理

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  8. HDU 1695 GCD(容斥定理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submis ...

  9. 题解报告:hdu 4135 Co-prime(容斥定理入门)

    Problem Description Given a number N, you are asked to count the number of integers between A and B ...

随机推荐

  1. 移动开发之浅析cocos2d-x的中文支持问题

    题记:这阵子一直在学习cocos2d-x,其跨平台的特性确实让人舒爽,引擎的框架概念也很成熟,虽然相应的第三方工具略显单薄,但也无愧是一件移动开发的利器啊,有兴趣的朋友有时间就多了解吧. 使用引擎的过 ...

  2. 图片鼠标滑过图片半透明(jquery特效)

    在做瑞祥之旅的过程,有一个部分是材料体系,材料体系下面.预览效果

  3. mount

    产品,平台,RS6000, pseries 软件版本, aix 当NFS在NFS客户端加载时,系统会问是使用 soft-mount 还是hard-mount, 它们之间有什么区别? 它们的区别在于当发 ...

  4. WPF如何在同一个区域依次叠加显示多张图片呢?

    正如标题的问题,有时需要在已显示的图片的右上角(或其他区域)显示小图标,譬如下图的患者头像右上角显示病情图标:(这里不采用事先用PS编排成一个图片文件的方式,因为此方式普适性不好) 解决方案:绘制该复 ...

  5. CCMoveTo 等函数理解

    CCMoveTo: 使用CCMoveTo action来让对象从右侧屏幕外移动到屏幕左侧.注意可以通过指定duration参数控制这一过程需要多久,这里我们随机给他2-4秒的时间. CCCallFun ...

  6. asmcmd报错

    在进入asm的命令行时报错: 报错内容如下 [oracle@kel dbs]$ asmcmd asmcmd: command disallowed by current instance type 从 ...

  7. Tkinter教程之Event篇(2)

    本文转载自:http://blog.csdn.net/jcodeer/article/details/1823548 '''Tkinter教程之Event篇(2)''''''5.测试离开(Leave) ...

  8. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

  9. Todolist

    UValive 6041(KD tree) UValive 6042(DP) UValive 6044(图论)

  10. BUILD_BUG_ON 的解释

    知乎上个问题<C 语言有什么奇技淫巧?>排名第一的是一个“抖机灵”的答案. C有一个鲜为人知的运算符叫”趋向于”, 写作“-->”.比如说如果要实现一个倒数的程序,我们可以定义一个变 ...