抓包分析TCP的三次握手和四次分手
一:三次握手
三次的握手的过程是:
1.由发起方HostA向被叫方HostB发出请求报文段,此时首部中的同步位SYN=1,同时选择一个序列号seq=x。TCP规定,SYN报文(即SYN=1的报文段)不能携带数据,但要消耗一个序列号。这时,TCP客户端进程进入SYN-SENT(同步已发送)状态。
2.HostB收到连接请求报文后,如同意建立连接,则向HostA发送确认。在确认报文段中应把SYN和ACK都置为1,确认号是ack=x+1,同时也为自己选择一个序列号seq=y。请注意这个报文段也不能携带任何数据,但同样要消耗一个序列号。这时TCP服务器进程进入SYN-REVD(同步收到)状态。
3.TCP客户端收到HostB的确认后,还要向HostB给出确认。确认报文段的ACK置1,确认号ack=y+1,而自己的序号seq=x+1。
此时SYN的值为0(待会从抓的报文中也可以看出)。TCP规定ACK的报文段可以携带数据。但如果不携带数据则不消耗序列号,在这种情况下,下一个数据报文段的序号仍是seq=x+1。整个过程如图所示。

三次握手第一步:

三次握手第二步:

三次握手第三步:

二:为什么要三次握手
书上、播客中找了好多三次握手的理由,但是解释都不是特别的清楚明白,问了身边搞网络工程师的同学,推荐了一本
《路由交换术》,这是同学参加华三公司考试时用的教科书,里面对三次握手的解释比较清楚。

三:四次分手
四次分手的过程是:
1.A的应用进程先向其TCP发出连接释放报文段,并停止再发送数据,主动关闭TCP连接A把连接释放报文段首部的FIN置1, 其序号seq = u , 它等于前面己传送过的数据的最后一个字节的序号加1,这时A进入FIN-WAIT- 1 (终止等待 1)状态 , 等待B的确认请注意 , TCP规定 , FIN报文段即使不携带数据 ,它也消耗掉一个序号。
2.B收到连接释放报文段后即发出确认,确认号是ack=u + 1,而这个报文段自己的序号 是v, 等于B前面己传送过的数据的最后一个字节的序号加1然后B就进入CLOSE-WAIT( 关闭等待 )状态 。TCP服务器进程这时应通知高层应用进程,因而从A到B这个方向的连接就释放了,这时的TCP连接处于半关闭 ( half-close )状态 ,即A己经没有数据要发送了,但B若发送数据 , A仍要接收 。也就是说 ,从B到A这个方向的连接并未关闭。这个状态可能会持续一些时间。A收到来自B的确认后 ,就进入FIN-WAIT-2(终止等待2)状态, 等待B发出的连接释放报文段 。
3.若B已经没有要向A发送的数据,其应用进程就通知TCP释放连接。这时B发出的连接释放报文段必须使FIN = 1, 现假定B的序号为w(在半关闭状态B可能又发送了一些数据)。B还必须重复上次己发送过的确认号 ack= u+1,这时B就进入LAST-ACK(最后确认)状态,等待A的确认。
4.A在收到B的连接释放报文段后,必须对此发出确认。在确认报文段中把ACK置1, 确认号ack = w + 1, 而自己的序号是seq = u + 1(根据TCP标准,前面发送过的FIN报文段要消耗一个序号 )。然后进入到TIME-WAIT( 时间等待)状态。请注意,现在TCP连接 还没有释放掉。必须经过时间等待计时器(TIME-WAIT timer) 设置的时间2MSL后,A才进入到CLOSED状态。时间MSL叫做最长报文段寿命(Maxium Segment Lifetime),RFC793 建议设为2分钟。但这完全是从工程上来考虑,对于现在的网络 ,MSL = 2分钟可能太长了 一些。因此TCP允许不同的实现可根据具体情况使用更小的MSL值。因此,从A进入到TIME-WAIT状态后, 要经过4分钟才能进入到CLOSED状态,才能开始建立下一个新的连接。当A撤销相应的传输控制块TCB后, 就结束了这次的TCP连接。 整个过程如图所示。


四次分手第一步:

四次分手第二步:

四次分手第三步:

四次分手第四步:

四:客户端、服务端整个过程
客户端整个过程如图。

服务端整个过程如图。

抓包分析TCP的三次握手和四次分手的更多相关文章
- 抓包分析TCP的三次握手和四次握手
问题描写叙述: 在上一篇<怎样对Android设备进行抓包>中提到了,server的开发者须要我bug重现然后提供抓包给他们分析.所以抓好包自己也试着分析了一下.发现里面全是一些TCP协议 ...
- linux下使用tcpdump抓包分析tcp的三次握手
首先贴上tcp 三次握手的原理图服务器开启ftp服务并执行tcpdump抓包服务器:192.168.3.14 ftp服务客户端:192.168.3.100 服务器执行以下命令,客户端访问服务器ftp: ...
- 基于wireshark抓包分析TCP的三次握手
1. TCP的三次握手 在TCP/IP协议通讯过程中,采用三次握手建立连接,从而保证连接的安全可靠. 所有基于TCP的通信都需要以两台主机的握手开始.这个握手过程主要是希望能达到以下不同的目的.[1] ...
- 简析TCP的三次握手与四次分手【转】
转自 简析TCP的三次握手与四次分手 | 果冻想http://www.jellythink.com/archives/705 TCP是什么? 具体的关于TCP是什么,我不打算详细的说了:当你看到这篇文 ...
- 007_wireshark分析TCP的三次握手和四次断开
要想进行抓包分析,必须先了解TCP的原理.这里介绍了TCP的建立连接的三次握手和断开连接的四次握手. 一.前言:介绍三次握手之前,先介绍TCP层的几个FLAGS字段,这个字段有如下的几种标示 SYN表 ...
- TCP之二:TCP的三次握手与四次分手
一.TCP是什么? 具体的关于TCP是什么,我不打算详细的说了:当你看到这篇文章时,我想你也知道TCP的概念了,想要更深入的了解TCP的工作,我们就继续.它只是一个超级麻烦的协议,而它又是互联网的基础 ...
- 简析TCP的三次握手与四次分手
TCP是什么? 具体的关于TCP是什么,我不打算详细的说了:当你看到这篇文章时,我想你也知道TCP的概念了,想要更深入的了解TCP的工作,我们就继续.它只是一个超级麻烦的协议,而它又是互联网的基础,也 ...
- 【转载】简析TCP的三次握手与四次分手
最近在补习HTTP协议相关知识点,看到这篇讲得不错,所以转载收藏一下,同时也分享给大家.原文地址:http://www.jellythink.com/archives/705,版权归原作者所有. TC ...
- 大杂烩 -- 简析TCP的三次握手与四次分手
基础大杂烩 -- 目录 -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- - ...
随机推荐
- 将Uploads文件夹移到其它地方
1.在创建目录 cd /mnt/xvdb mkdir qingtong 2.复制目录和权限 cp -rp /Uploads/ ./ -r 包括目录 p权限 3.创建软链接 ln -s /mnt/xvd ...
- MySQL并发复制系列三:MySQL和MariaDB实现对比
http://blog.itpub.net/28218939/viewspace-1975856/ 并发复制(Parallel Replication) 系列三:MySQL 5.7 和MariaDB ...
- Spket在Eclipse/MyEclipse下的安装和配置支持Ext(图文教程)
一.安装Spket 第一种方法:网上更新方式 1.插件首页:http://www.spket.com2.插件名称:Spket IDE3.更新连接(Update Site):http://www.spk ...
- CSS完成三角形
通过设置div的border属性,来实现! 将div的height和width属性分别设置为0px,将4边的border值设置为一样的宽度,通过调节边框的颜色课看到效果. <style> ...
- Objective-C ,ios,iphone开发基础:使用第三方库FMDB连接sqlite3 数据库,实现简单的登录
第一步:下载第三方库,点击 连接 下载, 第二部:准备数据库:按照连接&中博客的步骤实现数据库, 数据库的设计大致如下表: id username pas ...
- linux-进程相关
ps查看当前运行的进程 ps -ef|grep httpd ps是静态的 ps -aux|grep httpd top 是动态的 kill 杀进程 kill -[选项] 进程号 -9强制杀死 kil ...
- H.264编码之DCT变换原理
DCT变换是一种与FFT变换紧密相连的数学运算,当函数为偶函数是,其傅立叶展开式只有余弦项,因些称为余弦变换,其离散化的过程称为DCT(离散余弦)变换.下面我们就推导下H.264的4x4整数DCT公式 ...
- js实现归并排序
function merge(s_arr, d_arr, start, middle, end){ var s_temp = start; var m_temp = middle+1; var tem ...
- 练习题之Wait/Notify
方案一: public class PrintABC { public static void main(String[] args) { AtomicInteger synObj = ); Runn ...
- hdu 4671 瞎搞
题意:每个用户对数据库的查询请求都会首先用该数据库的服务器序列的第一个去执行任务,若第一个坏了,就由第二个执行.最多只会坏一个服务器.要求是考虑最多坏一个的情况下,所有服务器中执行用户查询的数目最大值 ...