题意:

走n步,给出每步向左走概率l,向右走概率r,留在原地的概率 1-l-r,求能达到的最远右边距离的期望。

分析;

开始按期望逆求的方式分析,但让求的就是右边界没法退,懵了一会,既然逆着不能求,就先正着求概率,再根据期望的定义来求,试试行吗,想了想状态,dp[i][j][k],表示走了i步当前位置是j最远右边界是k时的概率,因为可能位置是负的所以位置都加上n。

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define N 110
#define read freopen("in.txt", "r", stdin)
const ll INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod = ;
double dp[N][*N][N],l,r;
int main()
{
int n,o,t;
scanf("%d",&t);
while(t--){
scanf("%d%d%lf%lf",&o,&n,&l,&r);
memset(dp,,sizeof(dp));
dp[][n][n]=;
for(int i=;i<n;++i){
for(int j=;j<=*n;++j)
for(int k=j;k<=*n;++k)
{
dp[i+][j][k]+=dp[i][j][k]*(-l-r);
dp[i+][j-][k]+=dp[i][j][k]*l;
if(j+>k)
dp[i+][j+][k+]+=dp[i][j][k]*r;
else
dp[i+][j+][k]+=dp[i][j][k]*r;
}
}
//期望的定义
double total=0.0;
for(int j=;j<=*n;++j)
for(int k=j;k<=*n;++k)
total+=dp[n][j][k]*(k-n);
printf("%d %.4lf\n",o,total);
}
return ;
}

Maximum Random Walk(概率dp)的更多相关文章

  1. hdu 4579 Random Walk 概率DP

    思路:由于m非常小,只有5.所以用dp[i]表示从位置i出发到达n的期望步数. 那么dp[n] = 0 dp[i] = sigma(dp[i + j] * p (i , i + j)) + 1 .   ...

  2. HDU 4487 Maximum Random Walk

    Maximum Random Walk Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  3. Hdu 5001 Walk 概率dp

    Walk Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5001 Desc ...

  4. hdu5001 Walk 概率DP

    I used to think I could be anything, but now I know that I couldn't do anything. So I started travel ...

  5. HDU - 5001 Walk(概率dp+记忆化搜索)

    Walk I used to think I could be anything, but now I know that I couldn't do anything. So I started t ...

  6. HDU 5781 ATM Mechine (概率DP)

    ATM Mechine 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5781 Description Alice is going to take ...

  7. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  8. 从Random Walk谈到Bacterial foraging optimization algorithm(BFOA),再谈到Ramdom Walk Graph Segmentation图分割算法

    1. 从细菌的趋化性谈起 0x1:物质化学浓度梯度 类似于概率分布中概率密度的概念.在溶液中存在不同的浓度区域. 如放一颗糖在水盆里,糖慢慢溶于水,糖附近的水含糖量比远离糖的水含糖量要高,也就是糖附近 ...

  9. Domination(概率DP)

    Domination 题目链接:https://odzkskevi.qnssl.com/9713ae1d3ff2cc043442f25e9a86814c?v=1531624384 Edward is ...

随机推荐

  1. JS事件(事件冒泡和事件捕获)

    事件流:描述的是在页面中接收事件的顺序 事件冒泡:由最具体的元素接收,然后逐级向上传播至最不具体的元素的节点(文档) 事件捕获:最不具体的节点先接收事件,而最具体的节点应该是最后接收事件 DOM中:用 ...

  2. fhq_treap 总结

    今天跟着zcg大神学了一发fhq_treap 发现在维护区间问题上fhq_treap不仅思维量小,而且代码量更小 是Splay的不错的替代品,不过至今还是有一些问题不能很好的解决 譬如查询某个数在序列 ...

  3. Java并发:Callable、Future和FutureTask

    Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一 ...

  4. Intellij IDEA 快速创建Spring Web 项目

    相关软件: Intellij Idea14:http://pan.baidu.com/s/1nu16VyD JDK7:http://pan.baidu.com/s/1dEstJ5f Tomcat(ap ...

  5. mapper device&lvm

    http://www.ibm.com/developerworks/cn/linux/l-devmapper/ http://baike.baidu.com/view/361916.htm?fr=al ...

  6. HDFS 小文件处理——应用程序实现

    在真实环境中,处理日志的时候,会有很多小的碎文件,但是文件总量又是很大.普通的应用程序用来处理已经很麻烦了,或者说处理不了,这个时候需要对小文件进行一些特殊的处理——合并. 在这通过编写java应用程 ...

  7. Pig简单入门

    pig是hadoop客户端,使用类似于SQL的面向数据流的语言pig latin,这个语言可以完成排序,过滤,求和,关联等操作,可以支持自定义函数.Pig自动把pig latin 映射为Map-Red ...

  8. bash shell 合并文件

    # 按列合并文件 paste file1 file2 file3 > file4 # 要先 sort, 再 file1 file2 paste格式为: paste -d -s -file1 fi ...

  9. [NYIST16]矩形嵌套(DP,最长上升子序列)

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=16 像套娃一样把矩形套起来.先给矩形从小到大排序,然后做最长上升子序列就行 /* ━━━━ ...

  10. C# MySQL 数据库操作类

    using System; using System.Configuration; using System.Collections; using System.Data; using MySql.D ...