Large non-Mersenne prime

The first known prime found to exceed one million digits was discovered in 1999, and is a Mersenne prime of the form 26972593−1; it contains exactly 2,098,960 digits. Subsequently other Mersenne primes, of the form 2p−1, have been found which contain more digits.

However, in 2004 there was found a massive non-Mersenne prime which contains 2,357,207 digits: 28433×27830457+1.

Find the last ten digits of this prime number.


非梅森大素数

1999年人们发现了第一个超过一百万位的素数,这是一个梅森素数,可以表示为26972593−1,包含有2,098,960位数字。在此之后,更多形如2p−1的梅森素数被发现,其位数也越来越多。

然而,在2004年,人们发现了一个巨大的非梅森素数,包含有2,357,207位数字:28433×27830457+1。

找出这个素数的最后十位数字。

解题

感觉很简单。。。

JAVA

package Level3;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.math.BigInteger;
import java.util.ArrayList; public class PE097{
public static void run() {
BigInteger m = new BigInteger("10000000000");
BigInteger r1 = new BigInteger("28433");
BigInteger t = new BigInteger("2");
BigInteger exp = new BigInteger("7830457");
BigInteger res = t.modPow(exp, m);
res = r1.multiply(res).add(new BigInteger("1"));
res = res.mod(m);
System.out.println(res);
}
public static void main(String[] args) throws IOException {
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms"); }
}

// 8739992577
// running time=0s2ms

 

就这样

或者这样

    public static void run2(){
long base = 2;
long mod = 1000000000;
long exp = 7830457;
long res = 28433;
for(long i =1;i<=exp;i++){
res = (res*2)%mod;
}
res +=1;
res %=mod;
System.out.println(res);
}
// 739992577
// running time=0s163ms

上面mod少个0求的是后9位的数,因为多个0就越界了,少一位手工0到9可以暴力遍历。。。

Python

# coding=gbk
import copy
import time as time
def main():
print ((28433*(2**7830457))+1)%10000000000
t0 = time.time()
main()
t1 = time.time()
print "running time=",(t1-t0),"s"
#
# running time= 0.0190000534058 s

也就这样

Project Euler 97 :Large non-Mersenne prime 非梅森大素数的更多相关文章

  1. Project Euler:Problem 41 Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  2. Project Euler 13 Large sum

    题意:计算出以下一百个50位数的和的前十位数字. /************************************************************************* ...

  3. Python练习题 041:Project Euler 013:求和、取前10位数值

    本题来自 Project Euler 第13题:https://projecteuler.net/problem=13 # Project Euler: Problem 13: Large sum # ...

  4. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  5. Python练习题 035:Project Euler 007:第10001个素数

    本题来自 Project Euler 第7题:https://projecteuler.net/problem=7 # Project Euler: Problem 7: 10001st prime ...

  6. Python练习题 031:Project Euler 003:最大质因数

    本题来自 Project Euler 第3题:https://projecteuler.net/problem=3 # Project Euler: Problem 3: Largest prime ...

  7. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  8. C#+无unsafe的非托管大数组(large unmanaged array in c# without 'unsafe' keyword)

    C#+无unsafe的非托管大数组(large unmanaged array in c# without 'unsafe' keyword) +BIT祝威+悄悄在此留下版了个权的信息说: C#申请一 ...

  9. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

随机推荐

  1. Javascript(JS)中的大括号{}和中括号[]详解

    一.{ } 大括号,表示定义一个对象,大部分情况下要有成对的属性和值,或是函数. 如:var LangShen = {"Name":"Langshen",&qu ...

  2. Delphi XE5教程12:注释和编译器指示字

    内容源自Delphi XE5 UPDATE 2官方帮助<Delphi Reference>,本人水平有限,欢迎各位高人修正相关错误!也欢迎各位加入到Delphi学习资料汉化中来,有兴趣者可 ...

  3. Oracle RAC Failover

    Oracle  RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会 ...

  4. linux安装IPython四种方法

    IPython是Python的交互式Shell,提供了代码自动补完,自动缩进,高亮显示,执行Shell命令等非常有用的特性.特别是它的代码补完功能,例如:在输入zlib.之后按下Tab键,IPytho ...

  5. linux文件的通用操作方法学习

    2014-07-29 23:36:10 在linux下用文件描述符来表示设备文件和普通文件.文件描述符是一个整型的数据,所有对文件的操作都通过文件描述符实现. 文件描述符示文件系统中连接用户空间和内核 ...

  6. redis使用场景

    Redis应用场景   Redis开创了一种新的数据存储思路,使用Redis,我们不用在面对功能单调的数据库时,把精力放在如何把大象放进冰箱这样的问题上,而是利用Redis灵活多变的数据结构和数据操作 ...

  7. 【quartz】 入门

    把技术债务给还了,首先来一个最简单的demo: 2.x版比1.x有很多改进,1.x基于fw1.2: 2.x基于fw3.5以上:语法上有很大的不同,摒弃了很多1.x的很多东西: 直接以2.x来demo ...

  8. 说说iOS中的手势及触摸

    一.响应链 在IOS开发中会遇到各种操作事件,通过程序可以对这些事件做出响应. 首先,当发生事件响应时,必须知道由谁来响应事件.在IOS中,由响应者链来对事件进行响应,所有事件响应的类都是UIResp ...

  9. PHP正则表达式的逆向引用与子模式 php preg_replace应用

    mixed preg_replace ( mixed pattern, mixed replacement, mixed subject [, int limit]) 功能 在 subject 中搜索 ...

  10. LintCode-Unique Path II

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...