hdu 1392凸包周长
//用的自己的计算几何模板,不过比较慢嘿嘿
//要注意只有一个点和两个点
//Computational Geometry
//by kevin_samuel(fenice) Soochow University
//temple
#include <iostream>
#include <cmath>
#include <algorithm>
#include <cstdio>
//#include <stack> using namespace std; //define
const double EPS = 1e-8;
const double PI = acos(-1.0); //point
//====================================================================
class Point
{
public:
double x;
double y;
Point(){}
Point(double x,double y):x(x),y(y){} //operator
//operator=
Point& operator=(const Point& _P)
{
x = _P.x;
y = _P.y;
return *this;
}
//operator*
double operator*(const Point& _P)const
{
return x*_P.y - y *_P.x;
}
//operator-
Point operator-(const Point& _P)const
{
return Point(x - _P.x,y - _P.y);
}
//operator==
bool operator==(const Point& _P)const
{
if(fabs(_P.x - x) < EPS && fabs(_P.y - y) < EPS)
return true;
else
return false;
}
bool operator!=(const Point& _P)const
{
return ((*this) == _P) == false;
} //dot product
static double dotProduct(Point s1,Point e1,Point s2,Point e2)
{
double result = 0;
double x1 = e1.x - s1.x;
double y1 = e1.y - s1.y;
double x2 = e2.x - s2.x;
double y2 = e2.y - s2.y; result = x1*x2 + y1*y2;
return result;
} //cross product 1 (4 point-type params)
static double crossProduct(Point s1,Point e1,Point s2,Point e2)
{
double result = 0;
double x1 = e1.x - s1.x;
double y1 = e1.y - s1.y;
double x2 = e2.x - s2.x;
double y2 = e2.y - s2.y; result = x1*y2 - x2*y1; return result;
} //cross product 2 (3 point-type params)
static double crossProduct(Point p1,Point p2,Point p0)
{
return crossProduct(p0,p1,p0,p2);
} //Is on segment or line
static bool onSegment(Point Pi,Point Pj,Point Q)
{
if(Q.x >= min(Pi.x,Pj.x) && Q.x <= max(Pi.x,Pj.x) &&
Q.y >= min(Pi.y,Pj.y) && Q.y <= max(Pi.y,Pj.y) &&
fabs(crossProduct(Q,Pj,Pi)) < EPS
)
return true;
else
return false;
} //Is on segment
bool IsOnSegment(Point Pi,Point Pj)
{
if(this->x >= min(Pi.x,Pj.x) && this->x <= max(Pi.x,Pj.x) &&
this->y >= min(Pi.y,Pj.y) && this->y <= max(Pi.y,Pj.y) &&
fabs(Point::crossProduct(*this,Pj,Pi)) < EPS
)
return true;
else
return false;
} //Is inside triangle
bool inTriangle(Point A,Point B,Point C)
{ double Sabc = fabs(Point::crossProduct(B,C,A));
double Spab = fabs(Point::crossProduct(A,B,(*this)));
double Spac = fabs(Point::crossProduct(A,C,(*this)));
double Spbc = fabs(Point::crossProduct(B,C,(*this))); if(Spbc + Spab + Spac == Sabc)
return true;
else
return false;
} //Is inside polygon
//polys[] ,0-n
bool insidePolygon(Point *polys,int n)
{
int counter = 0;
double xinters;
Point p1,p2;
p1 = polys[0];
for(int i = 1; i < n; i++)
{
p2 = polys[i % n];
if(Point::onSegment(p1,p2,(*this)) == true)
return true;
if((*this).y > min(p1.y,p2.y) && (*this).y <= max(p1.y,p2.y))
{
if((*this).x <= max(p1.x,p2.x) && p1.y != p2.y)
{
xinters = ((*this).y - p1.y)*(p2.x - p1.x)/(p2.y - p1.y) + p1.x;
if(p1.x == p2.x || (*this).x <= xinters)
counter++;
}
}
p1 = p2;
}
if(counter % 2 == 0)
return false;
return true;
} //distance^2
double dis2(const Point& _P)const
{
return (x - _P.x)*(x - _P.x) + (y - _P.y)*(y - _P.y);
}
//distance
double dis(const Point& _P)const
{
return sqrt(dis2(_P));
}
static double dis(const Point& p1,const Point& p2)
{
return sqrt((p2.x - p1.x)*(p2.x - p1.x) + (p2.y - p1.y)*(p2.y -p1.y));
} }; //================================================================================== //vector segment or line
//================================================================================== class Vector
{
public:
Point start;
Point end;
double _x;
double _y;
double a,b,c; //ax + by + c = 0 Vector(){}
Vector(double __x,double __y):_x(__x),_y(__y){}
Vector(Point a,Point b):start(a),end(b) { _x = end.x - start.x; _y = end.y - start.y; } //operator
//judge the position of the point relative to the segment
double operator*(const Point& _P)const
{
double res = Point::crossProduct(_P,this->end,this->start);
if(fabs(res) < EPS)
return 0;
if(res > 0)
return 1;
else
return -1;
} //crossProduct
double operator*(const Vector& _V)const
{
Point st = _V.start;
Point en = _V.end;
return Point::crossProduct(start,end,st,en);
} //transfer to normal rex
bool pton()
{
a = start.y - end.y;
b = end.x - start.x;
c = start.x * end.y - start.y * end.x;
return true;
} //judge whether _P is on the line
bool IsLinehasPoint(const Point& _P)const
{
if(fabs((*this)*_P) < EPS)
return true;
else
return false;
} //juegde whether _P is on the segment
bool IsSegmenthasPoint(const Point& _P)const
{
if(_P.x >= min(this->start.x,this->end.x) && _P.x <= max(this->start.x,this->end.x) &&
_P.y >= min(this->start.y,this->end.y) && _P.y <= max(this->start.y,this->end.y) &&
fabs((*this)*_P) < EPS
)
return true;
else
return false;
} //the distance from point to line
double disToPoint(const Point& _P)
{
pton(); //transfer double td = (a*_P.x + b*_P.y + c)/sqrt(a*a + b*b); double xp = (b*b*_P.x - a*b*_P.y -a*c)/(a*a + b*b);
double yp = (-a*b*_P.x + a*a*_P.y - b*c)/(a*a + b*b);
double xb = max(start.x,end.x);
double yb = max(start.y,end.y);
double xs = start.x + end.x - xb;
double ys = start.y + end.y - yb; if(xp > xb + EPS||xp < xs - EPS||yp > yb + EPS||yp < ys - EPS)
td = min(_P.dis(start),_P.dis(end)); return fabs(td);
} //out the mirror point by this line or segment
Point mirrorPoint(const Point& _P)const
{
Point ret; double d = a * a + b * b;
ret.x = (b*b*_P.x - a*a*_P.x - 2*a*b*_P.y - 2*a*c)/d;
ret.y = (a*a*_P.y - b*b*_P.y - 2*a*b*_P.x - 2*b*c)/d; return ret;
} //out the vertical line of two points
static Vector verticalLine(const Point& _a,const Point& _b)
{
Vector ret;
ret.start.x = (_a.x + _b.x)/2;
ret.start.y = (_a.y + _b.y)/2; ret.a = _b.x - _a.x;
ret.b = _b.y - _a.y;
ret.c = (_a.y - _b.y)*ret.start.y + (_a.x - _b.x)*ret.start.x; if(fabs(ret.a) > EPS)
{
ret.end.y = 0.0;
ret.end.x = -ret.c/ret.a;
if(ret.end == ret.start)
{
ret.end.y = 1e10;
ret.end.x = -(ret.c - ret.b * ret.end.y)/ret.a;
}
}
else
{
ret.end.x = 0.0;
ret.end.y = - ret.c/ret.b;
if(ret.end == ret.start)
{
ret.end.x = 1e10;
ret.end.y = - (ret.c - ret.a*ret.end.x)/ret.b;
}
}
return ret;
} //line with line
//two lines coincide
bool equal(const Vector& _P)const
{
return IsLinehasPoint(_P.start) && IsLinehasPoint(_P.end);
} // two parallel lines
bool parallel(const Vector& _P)const
{
return (fabs((*this)*_P)) < EPS;
} //the intersection points of two lines
Point Intersection(Vector _V)
{
//judge parallel and coincide
Point ret = start;
double t = ((start.x - _V.start.x)*(_V.start.y - _V.end.y) - (start.y - _V.start.y)*(_V.start.x - _V.end.x))/
((start.x - end.x)*(_V.start.y - _V.end.y) - (start.y - end.y)*(_V.start.x - _V.end.x)); ret.x += (end.x - start.x)*t;
ret.y += (end.y - start.y)*t;
return ret;
} //line and segment
//is line cross with segment
//param:segment
bool crossSL(const Vector& _V)const
{
double rs = (*this)*_V.start;
double re = (*this)*_V.end;
return rs*re < EPS;
} //segment and segment
//judge wheather two segments intersect
bool IsCrossSS(const Vector& _V)const
{
return (
max(start.x,end.x) >= min(_V.start.x,_V.end.x) &&
max(_V.start.x,_V.end.x) >= min(start.x,end.x) &&
max(start.y,end.y) >= min(_V.start.y,_V.end.y) &&
max(_V.start.y,_V.end.y) >= min(start.y,end.y) &&
((Vector(_V.start,start)*_V)*(_V*Vector(_V.start,end)) >= EPS) &&
((Vector(start,_V.start)*(*this))*((*this)*Vector(start,_V.start))>=EPS) );
} };
//=================================================================================
//Graham-scan
#define MAXN 110
Point Points[MAXN]; int N; int stack[MAXN];
int top; bool cmp(const Point& a,const Point& b)
{
if(a.y == b.y)
return a.x < b.x;
else
return a.y < b.y;
} bool multi(Point sp,Point ep,Point op)
{
return (sp.x - op.x)*(ep.y - op.y) >= (ep.x - op.x)*(sp.y - op.y);
} void Graham_Scan()
{
int len;
top = 1;
sort(Points,Points+N,cmp);
if(N == 0)
return;
stack[0] = 0;
if(N == 1)
return;
stack[1] = 1;
if(N == 2)
return;
stack[2] = 2;
for(int i = 2; i < N; i++)
{
while(top && multi(Points[i],Points[stack[top]],Points[stack[top-1]])) top--;
stack[++top] = i;
}
len = top;
stack[++top] = N - 2;
for(int i = N - 3; i >= 0; i--)
{
while(top != len && multi(Points[i],Points[stack[top]],Points[stack[top-1]])) top--;
stack[++top] = i;
}
}
//==================================================================================
//test zone int main()
{
while(cin>>N)
{
if(N == 0)
break;
for(int i = 0; i < N; i++)
{
cin>>Points[i].x>>Points[i].y;
}
Graham_Scan();
double length = 0;
for(int i = 0; i <= top - 2; i++)
{
length +=Point::dis(Points[stack[i]],Points[stack[i+1]]);
}
length +=Point::dis(Points[stack[top - 1]],Points[stack[0]]);
if(N == 1)
printf("0.00\n");
else if(N == 2)
printf("%.2lf\n",Point::dis(Points[0],Points[1]));
else
printf("%.2lf\n",length);
}
return 0;
}
hdu 1392凸包周长的更多相关文章
- HDU 1392 凸包模板题,求凸包周长
1.HDU 1392 Surround the Trees 2.题意:就是求凸包周长 3.总结:第一次做计算几何,没办法,还是看了大牛的博客 #include<iostream> #inc ...
- HDU - 1392 凸包求周长(模板题)【Andrew】
<题目链接> 题目大意: 给出一些点,让你求出将这些点全部围住需要的多长的绳子. Andrew算法 #include<iostream> #include<cstdio& ...
- HDU 1392 凸包
Surround the Trees Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- Surround the Trees HDU 1392 凸包
Problem Description There are a lot of trees in an area. A peasant wants to buy a rope to surround a ...
- HDU 1392 Surround the Trees (凸包周长)
题目链接:HDU 1392 Problem Description There are a lot of trees in an area. A peasant wants to buy a rope ...
- HDU 1392 Surround the Trees (Graham求凸包周长)
题目链接 题意 : 让你找出最小的凸包周长 . 思路 : 用Graham求出凸包,然后对每条边求长即可. Graham详解 #include <stdio.h> #include < ...
- hdu 1392:Surround the Trees(计算几何,求凸包周长)
Surround the Trees Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU - 1392 Surround the Trees (凸包)
Surround the Trees:http://acm.hdu.edu.cn/showproblem.php?pid=1392 题意: 在给定点中找到凸包,计算这个凸包的周长. 思路: 这道题找出 ...
- hdu 1348:Wall(计算几何,求凸包周长)
Wall Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
随机推荐
- lighttpd 介绍及安装
一,为什么要使用lighttpd? apache不可以吗? 在支持纯静态的对象时,比如图片,文件等 , lighttpd速度更快,更理想 (lighttp 图片处理好,nginx负载 ...
- 使用Spring框架的12个开源项目
使用Spring框架的12个开源项目 http://www.csdn.net/article/2013-10-14/2817176-open-source-projects-that-use-spri ...
- 2013 ACM/ICPC Asia Regional Changsha Online - E
第一个被板刷的题 取余 依次算在周几 #include <iostream> #include<cstdio> #include<cstring> #include ...
- SQLite支持的SQL数据操作
事务处理 Posted on 2013 年 1 月 1 日 by 林溪 事务为一组SQL命令的集合,这些SQL命令在执行时不可进行分割,即要么全部执行这些SQL命令,要么一个都不进行执行,事务操作 ...
- hdu 2844 Coins
Coins Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted S ...
- ExecuteStoreQuery
using (var webdb = new kyj_NewHouseDBEntities()) { string sql = "select * from developer where ...
- 在win2008中配置ServU
因为08的防火墙要求比较高.很多端口都关闭,所以要设置防火墙. 首先设置入站规则 1.新建一条规则,规则类型选择“端口”,然后TCP,设置为20-21,60010-60020,然后允许链接,在配置文件 ...
- Tomcat安全
一.版本安全 升级当前的tomcat版本为最新稳定版本.故名思议,最新稳定版本就要兼顾最新和稳定这两个概念.一个稳定的版本,是需要时间沉淀的,而最新又是相对于稳定版而言的最新.因此我们一般会选择当前大 ...
- NGINX(一)内存结构
ngx_buf_t和ngx_chain_t是nginx中操作内存的重要手段, 很多的数据都需要通过这个结构进行保存. 其中ngx_buf_t中保存一块可用内存, ngx_chain_t则是将内存块连接 ...
- HDU 4009 Transfer water 最小树形图
分析:建一个远点,往每个点连建井的价值(单向边),其它输水线按照题意建单向边 然后以源点为根的权值最小的有向树就是答案,套最小树形图模板 #include <iostream> #incl ...