Generating Huge reports in JasperReports
There are certain things to care while implementing the Jasper Reports for huge dataset to handle the memory efficiently, so that the appliacation does not go out of memory.
They are:
1) Pagination of the data and use of JRDataSource,
2) Viruatization of the report.
When there is a huge dataset, it is not a good idea to retrieve all the data at one time.The application will hog up the memory and you’re application will go out of memory even before coming to the jasper report engine to fill up the data.To avoid that, the service layer/Db layer should return the data in pages and you gather the data in chunks and return the records in the chunks using JRDataSource interface, when the records are over in the current chunk, get the next chunk untilall the chunks gets over.When I meant JRDataSource, do not go for the Collection datasources, you implement the JRDataSource interface and provide the data through next() and getFieldValue()To provide an example, I just took the “virtualizer” example from the jasperReports sampleand modified a bit to demonstrate for this article.To know how to implement the JRDataSource, Have a look at the inner class “InnerDS” in the example.
Even after returning the data in chunks, finally the report has to be a single file.Jasper engine build the JasperPrint object for this. To avoid the piling up of memory at this stage, JasperReports provided a really cool feature called Virtualizer. Virtualizer basically serializes and writes the pages into file system to avoid the out of memory condition. There are 3 types of Virtualizer out there as of now. They are JRFileVirtualizer, JRSwapFileVirtualizer, and JRGzipVirtualizer.JRFileVirtualizer is a really simple virtualizer, where you need to mention the number of pages to keep in memory and the directory in which the Jasper Engine can swap the excess pages into files. Disadvantage with this Virtualizer is file handling overhead. This Virtualizer creates so many files during the process of virtualization and finally produces the required report file from those files.If the dataset is not that large, then you can go far JRFileVirtualizer.The second Virtualizer is JRSwapFileVirtualizer, which overcomes the disadvantage of JRFileVirtualizer. JRSwapFileVirtualizer creates only one swap file,which can be extended based on the size you specify. You have to specify the directory to swap, initial file size in number of blocks and the extension size for the JRSwapFile. Then while creating the JRSwapFileVirtualizer, provide the JRSwapFile as a parameter, and the number of pages to keep in memory. This Virtualizer is the best fit for the huge dataset.The Third Virtualizer is a special virtualizer which does not write the data into files, instead it compresses the jasper print object using the Gzip algorithm and reduces the memory consumption in the heap memory.The Ultimate Guide of JasperReports says that JRGzipVirtualizer can reduce the memory consumption by 1/10th. If you are dataset is not that big for sure and if you want to avoid the file I/O, you can go for JRGzipVirtualizer.
Check the sample to know more about the coding part. To keep it simple, I have reused the “virtualizer” sample and added the JRDataSource implementation with paging.I ran the sample that I have attached here for four scenarios. To tighten the limits to get the real effects, I ran the application with 10 MB as the max heap size (-Xmx10M).
1a) No Virtualizer, which ended up in out of memory with 10MB max heap size limit.
export:
[java] Exception in thread “main” java.lang.OutOfMemoryError: Java heap space
[java] Java Result: 1

1b) No Virtualizer with default heap size limit (64M)
export2:
[java] null
[java] Filling time : 44547
[java] PDF creation time : 22109
[java] XML creation time : 10157
[java] HTML creation time : 12281
[java] CSV creation time : 2078

2) 2) With JRFileVirtualizer
exportFV:
[java] Filling time : 161170
[java] PDF creation time : 38355
[java] XML creation time : 14483
[java] HTML creation time : 17935
[java] CSV creation time : 5812

3) With JRSwapFileVirtualizer
exportSFV:
[java] Filling time : 51879
[java] PDF creation time : 32501
[java] XML creation time : 14405
[java] HTML creation time : 16579
[java] CSV creation time : 5365

4a) With GZipVirtualizer with lots of GC
exportGZV:
[java] Filling time : 84062
[java] Exception in thread “RMI TCP Connection(22)-127.0.0.1″ java.lang.OutOfMemoryError: Java heap space
[java] Exception in thread “RMI TCP Connection(24)-127.0.0.1″ java.lang.OutOfMemoryError: Java heap space
[java] Exception in thread “main” java.lang.OutOfMemoryError: Java heap space
[java] Exception in thread “RMI TCP Connection(25)-127.0.0.1″ java.lang.OutOfMemoryError: Java heap space
[java] Exception in thread “RMI TCP Connection(27)-127.0.0.1″ java.lang.OutOfMemoryError: Java heap space
[java] Java Result: 1

4b) With GZipVirtualizer (max: 13MB)
exportGZV2:
[java] Filling time : 59297
[java] PDF creation time : 35594
[java] XML creation time : 16969
[java] HTML creation time : 19468
[java] CSV creation time : 10313

I have shared the updated virtualizer sample files at Updated Virtualizer Sample files
Generating Huge reports in JasperReports的更多相关文章
- (转) [it-ebooks]电子书列表
[it-ebooks]电子书列表 [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...
- systemtap 2.8 news
* What's new in version 2.8, 2015-06-17 - SystemTap has improved support for probing golang programs ...
- JasperReport html 导出
In my last blog post I discussed about Generating jasper reports in different formats using json fil ...
- 【RDA】使用RDA(Remote Diagnostic Agent)工具对数据库进行健康检查
[RDA]使用RDA(Remote Diagnostic Agent)工具对数据库进行健康检查 分类: Linux RDA英文全称叫做"Oracle Remote Diagnostic Ag ...
- 转载:《TypeScript 中文入门教程》 4、类
版权 文章转载自:https://github.com/zhongsp 建议您直接跳转到上面的网址查看最新版本. 介绍 传统的JavaScript程序使用函数和基于原型的继承来创建可重用的组件,但这对 ...
- Summary of Amazon Marketplace Web Service
Overview Here I want to summarize Amazon marketplace web service (MWS or AMWS) that can be used for ...
- ORACLE AWR概述及生成AWR报告
1.Overview of the Automatic Workload Repository The Automatic Workload Repository (AWR) collects, pr ...
- TypeScript学习笔记之类
TypeScript的类,简单地定义如下: class Person { x: number; // 默认为public类型 y: number; constructor(x1: number, y1 ...
- 负载,性能测试工具-Gatling
前言 Gatling Gatling是一款功能强大的负载测试工具,它为易于使用,高可维护性和高性能而设计. 开箱即用,Gatling由于对HTTP协议的出色支持,使其成为负载测试任何HTTP服务器的首 ...
随机推荐
- 急缺【jQuery】人才,要求熟悉jQuery,熟悉Js,熟悉前端开发
是一份兼职 是与jQuery相关的写作任务,有写作兴趣的欢迎站短(有blog者优先). 要求就是熟悉js和jquery,项目经验丰富(项目经验一定要丰富). 钱不多,不到1W,如果月薪超过1W的,我想 ...
- jquery实现抽奖转盘
用jquery通过配置参数实现抽奖转盘 1.html代码 <!DOCTYPE html> <html lang="zh-CN"> <head> ...
- URL学习笔记
不多说,先上代码,代码的注释写的已经挺详细的了 //URL:统一资源定位符,一个URL的对象,对应着互联网上的一个资源. //我们可以通过URL的对象调用其相应的方法,将此资源读取(即所谓的“下载”) ...
- 获取客户端访问的ip地址
function real_ip() { static $realip = NULL; if ($realip !== NULL) { return $realip; } if (isset($_SE ...
- Android 使用日常
如何让Android Studio的智能感知不区分大小写? http://ask.csdn.net/questions/155844
- RequireJS入门与进阶
RequireJS由James Burke创建,他也是AMD规范的创始人. RequireJS会让你以不同于往常的方式去写JavaScript.你将不再使用script标签在HTML中引入JS文件,以 ...
- html标准写法
<!--doctype指定文档类型htm--> <!doctype html> <html> <header> <!--设置字符集 utf-8-- ...
- memcache的一致性hash算法
<?php /** * 一致性哈希memcache分布式,采用的是虚拟节点的方式解决分布均匀性问题,查找节点采用二分法快速查找 * the last known user to change t ...
- 关于maven参数过滤
一.maven通过设置过滤器,可以使maven在编译打包时实现参数过滤的功能(详细配置说明略) <filters> <filter>../antx.properties< ...
- 关于yum与源码安装的LAMP或LNMP网页直接显示空白页的问题?
学习LAMP.LNMP时,遇到很奇怪的问题就是:搭建完LAMP或LNMP环境后安装PHPweb程序时,Discuz和Wordpress打不开安装向导,直接显示空白页(PHPWind9.0除外),没有任 ...