谈谈C#基元类型
首先看一下.NET 中的基元类型,如下表:
C# Type | .NET Framework Type
-------------| ----------------------
bool | System.Boolean
byte | System.Byte
sbyte | System.SByte
char | System.Char
decimal | System.Decimal
double | System.Double
float | System.Single
int | System.Int32
uint | System.UInt32
long | System.Int64
ulong | System.UInt64
object | System.Object
short | System.Int16
ushort | System.UInt16
string | System.String
网上已经无数的人问起这两个写到代码中的差异。 常见的回答是没有差异,因为生成的IL代码是一样的(还有人说基元类型只是个别名)。
比如这样一个简单的Class:
class Demo
{
int i =100;
System.Int32 j = 200;
}
生成的Il代码
IL_0000: ldarg.0
IL_0001: ldc.i4.s 64
IL_0003: stfld Demo.i
IL_0008: ldarg.0
IL_0009: ldc.i4 C8 00 00 00
IL_000E: stfld Demo.j
IL_0013: ldarg.0
IL_0014: call System.Object..ctor
IL_0019: nop
IL_001A: ret
可以看到i、j对应的IL指令是一样的。 所以这个说法是问题不大的。
等等, IL一样就一样么? 运行时是这样的,但是编译时呢?
让我们看看编译器怎么对待它们吧。(因为之前微软的编译器是不开源的,所以也就不知道他们的文法,现在新的编译器Roslyn已经开源了我们获取这个答案也就容易了)。
就按照刚才的那个Class进行文法解析, 你可以获取到的文法表达式如下:
SyntaxFactory.CompilationUnit()
.WithMembers(
SyntaxFactory.SingletonList<MemberDeclarationSyntax>(
SyntaxFactory.ClassDeclaration(
@"Demo")
.WithMembers(
SyntaxFactory.List<MemberDeclarationSyntax>(
new MemberDeclarationSyntax[]{
SyntaxFactory.FieldDeclaration(
SyntaxFactory.VariableDeclaration(
SyntaxFactory.PredefinedType(
SyntaxFactory.Token(
SyntaxKind.IntKeyword)))
.WithVariables(
SyntaxFactory.SingletonSeparatedList<VariableDeclaratorSyntax>(
SyntaxFactory.VariableDeclarator(
SyntaxFactory.Identifier(
@"i"))
.WithInitializer(
SyntaxFactory.EqualsValueClause(
SyntaxFactory.LiteralExpression(
SyntaxKind.NumericLiteralExpression,
SyntaxFactory.Literal(
SyntaxFactory.TriviaList(),
@"100",
100,
SyntaxFactory.TriviaList()))))))),
SyntaxFactory.FieldDeclaration(
SyntaxFactory.VariableDeclaration(
SyntaxFactory.QualifiedName(
SyntaxFactory.IdentifierName(
@"System"),
SyntaxFactory.IdentifierName(
@"Int32")))
.WithVariables(
SyntaxFactory.SingletonSeparatedList<VariableDeclaratorSyntax>(
SyntaxFactory.VariableDeclarator(
SyntaxFactory.Identifier(
@"j"))
.WithInitializer(
SyntaxFactory.EqualsValueClause(
SyntaxFactory.LiteralExpression(
SyntaxKind.NumericLiteralExpression,
SyntaxFactory.Literal(
SyntaxFactory.TriviaList(),
@"200",
200,
SyntaxFactory.TriviaList())))))))}))))
.NormalizeWhitespace()
的确一大坨, 但是语义相当可读。
这里的int被解析成了
SyntaxFactory.PredefinedType(SyntaxFactory.Token(SyntaxKind.IntKeyword))
System.Int32 被解析成了
SyntaxFactory.QualifiedName(SyntaxFactory.IdentifierName(@"System"),
SyntaxFactory.IdentifierName(@"Int32"))
看到差异了吧。 在看看这里语法定义的继承结构吧。
Object (in System) mscorlib, Version=4.0.0.0
SyntaxNode (in Microsoft.CodeAnalysis)
CSharpSyntaxNode (in Microsoft.CodeAnalysis.CSharp)
ExpressionSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
TypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
ArrayTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
BaseClassWithArgumentsSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
NameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
AliasQualifiedNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
QualifiedNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
SimpleNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
GenericNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
IdentifierNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
NullableTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
OmittedTypeArgumentSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
PointerTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
PredefinedTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
从这个树形结构上就能判断以前有人说是只是个别名就是个理解错误了。
当然.NET为了避免出现这样的情况被编译通过
public void Print(int a){}
public void Print(Int32 a){}
对当前文法还会进行转换的。 解析器里的定义了特殊类型待遇。 我摘抄一下特殊类型的定义。
// Copyright (c) Microsoft Open Technologies, Inc. All Rights Reserved. Licensed under the Apache License, Version 2.0. See License.txt in the project root for license information.
using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
namespace Microsoft.CodeAnalysis
{
/// <summary>
/// Specifies the Ids of special runtime types.
/// </summary>
/// <remarks>
/// Only types explicitly mentioned in "Co-located core types" spec
/// (http://devdiv/sites/docs/Dev11/CLR/Specs/CoreFx/Co-located%20core%20types.docx)
/// can be in this enum.
/// The following things should be in sync:
/// 1) SpecialType enum
/// 2) names in SpecialTypes.EmittedNames array.
/// </remarks>
public enum SpecialType : sbyte
{
/// <summary>
/// OIndicated Non-sepecial type (default value).
/// </summary>
None = 0,
/// <summary>
/// Indicates that the type is <see cref="object"/>.
/// </summary>
System_Object,
/// <summary>
/// Indicates that the type is <see cref="Enum"/>.
/// </summary>
System_Enum,
/// <summary>
/// Indicates that the type is <see cref="MulticastDelegate"/>.
/// </summary>
System_MulticastDelegate,
/// <summary>
/// Indicates that the type is <see cref="Delegate"/>.
/// </summary>
System_Delegate,
/// <summary>
/// Indicates that the type is <see cref="ValueType"/>.
/// </summary>
System_ValueType,
/// <summary>
/// Indicates that the type is <see cref="void"/>.
/// </summary>
System_Void,
/// <summary>
/// Indicates that the type is <see cref="bool"/>.
/// </summary>
System_Boolean,
/// <summary>
/// Indicates that the type is <see cref="char"/>.
/// </summary>
System_Char,
/// <summary>
/// Indicates that the type is <see cref="sbyte"/>.
/// </summary>
System_SByte,
/// <summary>
/// Indicates that the type is <see cref="byte"/>.
/// </summary>
System_Byte,
/// <summary>
/// Indicates that the type is <see cref="short"/>.
/// </summary>
System_Int16,
/// <summary>
/// Indicates that the type is <see cref="ushort"/>.
/// </summary>
System_UInt16,
/// <summary>
/// Indicates that the type is <see cref="int"/>.
/// </summary>
System_Int32,
/// <summary>
/// Indicates that the type is <see cref="uint"/>.
/// </summary>
System_UInt32,
/// <summary>
/// Indicates that the type is <see cref="long"/>.
/// </summary>
System_Int64,
/// <summary>
/// Indicates that the type is <see cref="ulong"/>.
/// </summary>
System_UInt64,
/// <summary>
/// Indicates that the type is <see cref="decimal"/>.
/// </summary>
System_Decimal,
/// <summary>
/// Indicates that the type is <see cref="float"/>.
/// </summary>
System_Single,
/// <summary>
/// Indicates that the type is <see cref="double"/>.
/// </summary>
System_Double,
/// <summary>
/// Indicates that the type is <see cref="string"/>.
/// </summary>
System_String,
/// <summary>
/// Indicates that the type is <see cref="IntPtr" />.
/// </summary>
System_IntPtr,
/// <summary>
/// Indicates that the type is <see cref="UIntPtr"/>.
/// </summary>
System_UIntPtr,
/// <summary>
/// Indicates that the type is <see cref="Array"/>.
/// </summary>
System_Array,
/// <summary>
/// Indicates that the type is <see cref="IEnumerable"/>.
/// </summary>
System_Collections_IEnumerable,
/// <summary>
/// Indicates that the type is <see cref="IEnumerable{T}"/>.
/// </summary>
System_Collections_Generic_IEnumerable_T, // Note: IEnumerable<int> (i.e. constructed type) has no special type
/// <summary>
/// Indicates that the type is <see cref="IList{T}"/>.
/// </summary>
System_Collections_Generic_IList_T,
/// <summary>
/// Indicates that the type is <see cref="ICollection{T}"/>.
/// </summary>
System_Collections_Generic_ICollection_T,
/// <summary>
/// Indicates that the type is <see cref="IEnumerator"/>.
/// </summary>
System_Collections_IEnumerator,
/// <summary>
/// Indicates that the type is <see cref="IEnumerator{T}"/>.
/// </summary>
System_Collections_Generic_IEnumerator_T,
/// <summary>
/// Indicates that the type is <see cref="IReadOnlyList{T}"/>.
/// </summary>
System_Collections_Generic_IReadOnlyList_T,
/// <summary>
/// Indicates that the type is <see cref="IReadOnlyCollection{T}"/>.
/// </summary>
System_Collections_Generic_IReadOnlyCollection_T,
/// <summary>
/// Indicates that the type is <see cref="Nullable{T}"/>.
/// </summary>
System_Nullable_T,
/// <summary>
/// Indicates that the type is <see cref="DateTime"/>.
/// </summary>
System_DateTime,
/// <summary>
/// Indicates that the type is <see cref="IsVolatile"/>.
/// </summary>
System_Runtime_CompilerServices_IsVolatile,
/// <summary>
/// Indicates that the type is <see cref="IDisposable"/>.
/// </summary>
System_IDisposable,
/// <summary>
/// Indicates that the type is <see cref="T:System.TypedReference"/>.
/// </summary>
System_TypedReference,
/// <summary>
/// Indicates that the type is <see cref="T:System.ArgIterator"/>.
/// </summary>
System_ArgIterator,
/// <summary>
/// Indicates that the type is <see cref="T:System.RuntimeArgumentHandle"/>.
/// </summary>
System_RuntimeArgumentHandle,
/// <summary>
/// Indicates that the type is <see cref="RuntimeFieldHandle"/>.
/// </summary>
System_RuntimeFieldHandle,
/// <summary>
/// Indicates that the type is <see cref="RuntimeMethodHandle"/>.
/// </summary>
System_RuntimeMethodHandle,
/// <summary>
/// Indicates that the type is <see cref="RuntimeTypeHandle"/>.
/// </summary>
System_RuntimeTypeHandle,
/// <summary>
/// Indicates that the type is <see cref="IAsyncResult"/>.
/// </summary>
System_IAsyncResult,
/// <summary>
/// Indicates that the type is <see cref="AsyncCallback"/>.
/// </summary>
System_AsyncCallback,
/// <summary>
/// Count of special types. This is not a count of enum members.
/// </summary>
Count = System_AsyncCallback
}
}
这些类型都是优待的, 最终会Emit到IL指令。
结论是: 基元类型跟BCL中对应的类型都将在文法解析生成到同一类型定义上, 特殊类型的定义被最终Emit到IL上。
如果从编译性能角度考虑,基元类型会占那么一点点优势。
谈谈C#基元类型的更多相关文章
- 重温CLR(四)基元类型、引用类型、值类型
编程语言的基元类型 编译器直接支持的数据类型称为基元类型(primitive type).基元类型直接映射到framework类型(fcl)中存在的类型. 下表列出fcl类型 从另一个角度,可以认为C ...
- 【深入.NET平台】浅谈.NET Framework基元类型
什么是基元类型? 初学者可能很少听说过这个名词,但是平时用得最多的肯定是基元类型.先看下面两行代码: System.Int32 a = ; ; 上面两行代码都表示声明一个int类型的变量,但在平时写 ...
- CLR:基元类型、引用类型和值类型
最新更新请访问: http://denghejun.github.io 前言 今天重新看了下关于CLR基元类型的东西,觉得还是有必要将其记录下来,毕竟这是理解CLR成功 之路上的重要一步,希望你也 ...
- 《CLR via C#》读书笔记--基元类型、引用类型和值类型
编程语言的基元类型 编译器直接支持的数据类型称为基元类型.基元类型直接映射到Framework类库中存在的类型.例如:C#中的int直接映射到System.Int32类型.下表给出了C#基元类型与对应 ...
- CLR via C#(02)-基元类型、引用类型、值类型
http://www.cnblogs.com/qq0827/p/3281150.html 一. 基元类型 编译器能够直接支持的数据类型叫做基元类型.例如int, string等.基元类型和.NET框架 ...
- 《CLR via C#》读书笔记(5)基元类型、引用类型和值类型
5.1 基元类型 编译器直接支持的数据类型称为基元类型(primitive type). 以下4行到吗生成完全相同的IL int a = 0; //最方便的语法 System.Int32 b = 0; ...
- 【CLR Via C#】第5章 基元类型、引用类型、值类型
第二遍看这本书,决定记录一下加深印象. 1,基元类型 什么事基元类型?基元类型是直接映射到FrameWork类库(FCL)中存在的类型,编译器直接支持的数据类型.比如int直接映射到System.In ...
- CLR via C#深解笔记三 - 基元类型、引用类型和值类型 | 类型和成员基础 | 常量和字段
编程语言的基元类型 某些数据类型如此常用,以至于许多编译器允许代码以简化的语法来操纵它们. System.Int32 a = new System.Int32(); // a = 0 a = 1 ...
- 【C#进阶系列】05 基元类型、引用类型和值类型
基元类型和FCL类型 FCL类型就是指Int32这种类型,这是CLR支持的类型. 而基元类型就是指int这种类型,这是C#编译器支持的,实际上在编译后,还是会被转为Int32类型. 而且学过C的朋友 ...
随机推荐
- UVA 550 Multiplying by Rotation (简单递推)
题意:有些数字是可以这样的:abcd*k=dabc,例如179487 * 4 = 717948,仅仅将尾数7移动到前面,其他都不用改变位置及大小.这里会给出3个数字b.d.k,分别代表b进制.尾数.第 ...
- sublime3 常用功能总结
介绍几个常见的功能: l 自动完成:自动完成的快捷键是Tab和Enter,如果在html文件中,输入cl按下tab或Enter,即可自动补全为class=””:加上zencoding后,更是如虎添翼, ...
- RTP/RTCP(一)-H264关于RTP协议的实现
H264关于RTP协议的实现2010-07-22 13:35完整的C/S架构的基于RTP/RTCP的H.264视频传输方案.此方案中,在服务器端和客户端分别进行了功能模块设计.服务器端:RTP封装模块 ...
- 《C++ Primer 4th》读书笔记 第10章-关联容器
原创文章,转载请注明出处:http://www.cnblogs.com/DayByDay/p/3936464.html
- 多线程程序设计学习(2)之single threaded execution pattern
Single Threaded Execution Pattern[独木桥模式] 一:single threaded execution pattern的参与者--->SharedResourc ...
- 【Unity3D】枪战游戏—发射子弹、射线检测
一.子弹的碰撞检测: 因为子弹的移动速度非常的快,那么如果为子弹添加一个collider,就有可能检测不到了. 因为collider是每一帧在执行,第一帧子弹可能在100米处,那么下一帧就在900米处 ...
- 如何打开和关闭Oracle Flashback
1.打开flashback: 关闭数据库 SQL>shutdown immediate; 启动到mount方式 SQL>startup mount; 如果归档没有打开,打开归档[因为fla ...
- HDU 4405-Aeroplane chess(概率dp)
题意: n+1格飞行棋,编号0-n,从0格开始,每次扔一个色子,得到的点数就向前走几步,但有有些格子到达后可以直接飞到后面的格子, 当到达>=n的地方结束,求结束扔色子的期望次数. 分析: dp ...
- Windows下Qt开发环境:OpenGL导入3DMax模型(.3DS)
参考:http://blog.csdn.net/cq361106306/article/details/41876541 效果: 源代码: 解释: CLoad3DS.h为加载3DMax模型的头文件,C ...
- duilib中控件拖拽功能的实现方法(附源码)
转载请说明原出处,谢谢~~:http://blog.csdn.net/zhuhongshu/article/details/41144283 duilib库中原本没有显示的对控件增加拖拽的功能,而实际 ...