首先看一下.NET 中的基元类型,如下表:

C# Type      | .NET Framework Type
-------------| ----------------------
bool | System.Boolean
byte | System.Byte
sbyte | System.SByte
char | System.Char
decimal | System.Decimal
double | System.Double
float | System.Single
int | System.Int32
uint | System.UInt32
long | System.Int64
ulong | System.UInt64
object | System.Object
short | System.Int16
ushort | System.UInt16
string | System.String

网上已经无数的人问起这两个写到代码中的差异。 常见的回答是没有差异,因为生成的IL代码是一样的(还有人说基元类型只是个别名)。
比如这样一个简单的Class:

class Demo
{
int i =100;
System.Int32 j = 200;
}

生成的Il代码

IL_0000:  ldarg.0
IL_0001: ldc.i4.s 64
IL_0003: stfld Demo.i
IL_0008: ldarg.0
IL_0009: ldc.i4 C8 00 00 00
IL_000E: stfld Demo.j
IL_0013: ldarg.0
IL_0014: call System.Object..ctor
IL_0019: nop
IL_001A: ret

可以看到i、j对应的IL指令是一样的。 所以这个说法是问题不大的。

等等, IL一样就一样么? 运行时是这样的,但是编译时呢?
让我们看看编译器怎么对待它们吧。(因为之前微软的编译器是不开源的,所以也就不知道他们的文法,现在新的编译器Roslyn已经开源了我们获取这个答案也就容易了)。

就按照刚才的那个Class进行文法解析, 你可以获取到的文法表达式如下:

SyntaxFactory.CompilationUnit()
.WithMembers(
SyntaxFactory.SingletonList<MemberDeclarationSyntax>(
SyntaxFactory.ClassDeclaration(
@"Demo")
.WithMembers(
SyntaxFactory.List<MemberDeclarationSyntax>(
new MemberDeclarationSyntax[]{
SyntaxFactory.FieldDeclaration(
SyntaxFactory.VariableDeclaration(
SyntaxFactory.PredefinedType(
SyntaxFactory.Token(
SyntaxKind.IntKeyword)))
.WithVariables(
SyntaxFactory.SingletonSeparatedList<VariableDeclaratorSyntax>(
SyntaxFactory.VariableDeclarator(
SyntaxFactory.Identifier(
@"i"))
.WithInitializer(
SyntaxFactory.EqualsValueClause(
SyntaxFactory.LiteralExpression(
SyntaxKind.NumericLiteralExpression,
SyntaxFactory.Literal(
SyntaxFactory.TriviaList(),
@"100",
100,
SyntaxFactory.TriviaList()))))))),
SyntaxFactory.FieldDeclaration(
SyntaxFactory.VariableDeclaration(
SyntaxFactory.QualifiedName(
SyntaxFactory.IdentifierName(
@"System"),
SyntaxFactory.IdentifierName(
@"Int32")))
.WithVariables(
SyntaxFactory.SingletonSeparatedList<VariableDeclaratorSyntax>(
SyntaxFactory.VariableDeclarator(
SyntaxFactory.Identifier(
@"j"))
.WithInitializer(
SyntaxFactory.EqualsValueClause(
SyntaxFactory.LiteralExpression(
SyntaxKind.NumericLiteralExpression,
SyntaxFactory.Literal(
SyntaxFactory.TriviaList(),
@"200",
200,
SyntaxFactory.TriviaList())))))))}))))
.NormalizeWhitespace()

的确一大坨, 但是语义相当可读。
这里的int被解析成了

SyntaxFactory.PredefinedType(SyntaxFactory.Token(SyntaxKind.IntKeyword))

System.Int32 被解析成了

SyntaxFactory.QualifiedName(SyntaxFactory.IdentifierName(@"System"),
SyntaxFactory.IdentifierName(@"Int32"))

看到差异了吧。 在看看这里语法定义的继承结构吧。

Object (in System) mscorlib, Version=4.0.0.0
SyntaxNode (in Microsoft.CodeAnalysis)
CSharpSyntaxNode (in Microsoft.CodeAnalysis.CSharp)
ExpressionSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
TypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
ArrayTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
BaseClassWithArgumentsSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
NameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
AliasQualifiedNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
QualifiedNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
SimpleNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
GenericNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
IdentifierNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
NullableTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
OmittedTypeArgumentSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
PointerTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
PredefinedTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)

从这个树形结构上就能判断以前有人说是只是个别名就是个理解错误了。

当然.NET为了避免出现这样的情况被编译通过

public void Print(int a){}

public void Print(Int32 a){}

对当前文法还会进行转换的。 解析器里的定义了特殊类型待遇。 我摘抄一下特殊类型的定义。

// Copyright (c) Microsoft Open Technologies, Inc.  All Rights Reserved.  Licensed under the Apache License, Version 2.0.  See License.txt in the project root for license information.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.CompilerServices; namespace Microsoft.CodeAnalysis
{
/// <summary>
/// Specifies the Ids of special runtime types.
/// </summary>
/// <remarks>
/// Only types explicitly mentioned in "Co-located core types" spec
/// (http://devdiv/sites/docs/Dev11/CLR/Specs/CoreFx/Co-located%20core%20types.docx)
/// can be in this enum.
/// The following things should be in sync:
/// 1) SpecialType enum
/// 2) names in SpecialTypes.EmittedNames array.
/// </remarks>
public enum SpecialType : sbyte
{
/// <summary>
/// OIndicated Non-sepecial type (default value).
/// </summary>
None = 0, /// <summary>
/// Indicates that the type is <see cref="object"/>.
/// </summary>
System_Object, /// <summary>
/// Indicates that the type is <see cref="Enum"/>.
/// </summary>
System_Enum, /// <summary>
/// Indicates that the type is <see cref="MulticastDelegate"/>.
/// </summary>
System_MulticastDelegate, /// <summary>
/// Indicates that the type is <see cref="Delegate"/>.
/// </summary>
System_Delegate, /// <summary>
/// Indicates that the type is <see cref="ValueType"/>.
/// </summary>
System_ValueType, /// <summary>
/// Indicates that the type is <see cref="void"/>.
/// </summary>
System_Void, /// <summary>
/// Indicates that the type is <see cref="bool"/>.
/// </summary>
System_Boolean, /// <summary>
/// Indicates that the type is <see cref="char"/>.
/// </summary>
System_Char, /// <summary>
/// Indicates that the type is <see cref="sbyte"/>.
/// </summary>
System_SByte, /// <summary>
/// Indicates that the type is <see cref="byte"/>.
/// </summary>
System_Byte, /// <summary>
/// Indicates that the type is <see cref="short"/>.
/// </summary>
System_Int16, /// <summary>
/// Indicates that the type is <see cref="ushort"/>.
/// </summary>
System_UInt16, /// <summary>
/// Indicates that the type is <see cref="int"/>.
/// </summary>
System_Int32, /// <summary>
/// Indicates that the type is <see cref="uint"/>.
/// </summary>
System_UInt32, /// <summary>
/// Indicates that the type is <see cref="long"/>.
/// </summary>
System_Int64, /// <summary>
/// Indicates that the type is <see cref="ulong"/>.
/// </summary>
System_UInt64, /// <summary>
/// Indicates that the type is <see cref="decimal"/>.
/// </summary>
System_Decimal, /// <summary>
/// Indicates that the type is <see cref="float"/>.
/// </summary>
System_Single, /// <summary>
/// Indicates that the type is <see cref="double"/>.
/// </summary>
System_Double, /// <summary>
/// Indicates that the type is <see cref="string"/>.
/// </summary>
System_String, /// <summary>
/// Indicates that the type is <see cref="IntPtr" />.
/// </summary>
System_IntPtr, /// <summary>
/// Indicates that the type is <see cref="UIntPtr"/>.
/// </summary>
System_UIntPtr, /// <summary>
/// Indicates that the type is <see cref="Array"/>.
/// </summary>
System_Array, /// <summary>
/// Indicates that the type is <see cref="IEnumerable"/>.
/// </summary>
System_Collections_IEnumerable, /// <summary>
/// Indicates that the type is <see cref="IEnumerable{T}"/>.
/// </summary>
System_Collections_Generic_IEnumerable_T, // Note: IEnumerable<int> (i.e. constructed type) has no special type /// <summary>
/// Indicates that the type is <see cref="IList{T}"/>.
/// </summary>
System_Collections_Generic_IList_T, /// <summary>
/// Indicates that the type is <see cref="ICollection{T}"/>.
/// </summary>
System_Collections_Generic_ICollection_T, /// <summary>
/// Indicates that the type is <see cref="IEnumerator"/>.
/// </summary>
System_Collections_IEnumerator, /// <summary>
/// Indicates that the type is <see cref="IEnumerator{T}"/>.
/// </summary>
System_Collections_Generic_IEnumerator_T, /// <summary>
/// Indicates that the type is <see cref="IReadOnlyList{T}"/>.
/// </summary>
System_Collections_Generic_IReadOnlyList_T, /// <summary>
/// Indicates that the type is <see cref="IReadOnlyCollection{T}"/>.
/// </summary>
System_Collections_Generic_IReadOnlyCollection_T, /// <summary>
/// Indicates that the type is <see cref="Nullable{T}"/>.
/// </summary>
System_Nullable_T, /// <summary>
/// Indicates that the type is <see cref="DateTime"/>.
/// </summary>
System_DateTime, /// <summary>
/// Indicates that the type is <see cref="IsVolatile"/>.
/// </summary>
System_Runtime_CompilerServices_IsVolatile, /// <summary>
/// Indicates that the type is <see cref="IDisposable"/>.
/// </summary>
System_IDisposable, /// <summary>
/// Indicates that the type is <see cref="T:System.TypedReference"/>.
/// </summary>
System_TypedReference, /// <summary>
/// Indicates that the type is <see cref="T:System.ArgIterator"/>.
/// </summary>
System_ArgIterator, /// <summary>
/// Indicates that the type is <see cref="T:System.RuntimeArgumentHandle"/>.
/// </summary>
System_RuntimeArgumentHandle, /// <summary>
/// Indicates that the type is <see cref="RuntimeFieldHandle"/>.
/// </summary>
System_RuntimeFieldHandle, /// <summary>
/// Indicates that the type is <see cref="RuntimeMethodHandle"/>.
/// </summary>
System_RuntimeMethodHandle, /// <summary>
/// Indicates that the type is <see cref="RuntimeTypeHandle"/>.
/// </summary>
System_RuntimeTypeHandle, /// <summary>
/// Indicates that the type is <see cref="IAsyncResult"/>.
/// </summary>
System_IAsyncResult, /// <summary>
/// Indicates that the type is <see cref="AsyncCallback"/>.
/// </summary>
System_AsyncCallback, /// <summary>
/// Count of special types. This is not a count of enum members.
/// </summary>
Count = System_AsyncCallback
}
}

这些类型都是优待的, 最终会Emit到IL指令。


结论是: 基元类型跟BCL中对应的类型都将在文法解析生成到同一类型定义上, 特殊类型的定义被最终Emit到IL上。
如果从编译性能角度考虑,基元类型会占那么一点点优势。

谈谈C#基元类型的更多相关文章

  1. 重温CLR(四)基元类型、引用类型、值类型

    编程语言的基元类型 编译器直接支持的数据类型称为基元类型(primitive type).基元类型直接映射到framework类型(fcl)中存在的类型. 下表列出fcl类型 从另一个角度,可以认为C ...

  2. 【深入.NET平台】浅谈.NET Framework基元类型

    什么是基元类型? 初学者可能很少听说过这个名词,但是平时用得最多的肯定是基元类型.先看下面两行代码: System.Int32 a = ; ;  上面两行代码都表示声明一个int类型的变量,但在平时写 ...

  3. CLR:基元类型、引用类型和值类型

    最新更新请访问: http://denghejun.github.io   前言 今天重新看了下关于CLR基元类型的东西,觉得还是有必要将其记录下来,毕竟这是理解CLR成功 之路上的重要一步,希望你也 ...

  4. 《CLR via C#》读书笔记--基元类型、引用类型和值类型

    编程语言的基元类型 编译器直接支持的数据类型称为基元类型.基元类型直接映射到Framework类库中存在的类型.例如:C#中的int直接映射到System.Int32类型.下表给出了C#基元类型与对应 ...

  5. CLR via C#(02)-基元类型、引用类型、值类型

    http://www.cnblogs.com/qq0827/p/3281150.html 一. 基元类型 编译器能够直接支持的数据类型叫做基元类型.例如int, string等.基元类型和.NET框架 ...

  6. 《CLR via C#》读书笔记(5)基元类型、引用类型和值类型

    5.1 基元类型 编译器直接支持的数据类型称为基元类型(primitive type). 以下4行到吗生成完全相同的IL int a = 0; //最方便的语法 System.Int32 b = 0; ...

  7. 【CLR Via C#】第5章 基元类型、引用类型、值类型

    第二遍看这本书,决定记录一下加深印象. 1,基元类型 什么事基元类型?基元类型是直接映射到FrameWork类库(FCL)中存在的类型,编译器直接支持的数据类型.比如int直接映射到System.In ...

  8. CLR via C#深解笔记三 - 基元类型、引用类型和值类型 | 类型和成员基础 | 常量和字段

    编程语言的基元类型   某些数据类型如此常用,以至于许多编译器允许代码以简化的语法来操纵它们. System.Int32 a = new System.Int32();  // a = 0 a = 1 ...

  9. 【C#进阶系列】05 基元类型、引用类型和值类型

     基元类型和FCL类型 FCL类型就是指Int32这种类型,这是CLR支持的类型. 而基元类型就是指int这种类型,这是C#编译器支持的,实际上在编译后,还是会被转为Int32类型. 而且学过C的朋友 ...

随机推荐

  1. 【C#学习笔记】写文件

    using System; using System.IO; namespace ConsoleApplication { class Program { static void Main(strin ...

  2. H264 TS/ES

    ES流(Elementary Stream): 也叫基本码流,包含视频.音频或数据的连续码流.       PES流(Packet Elementary Stream): 也叫打包的基本码流, 是将基 ...

  3. MySql表中key的区别

    我们看到Key那一栏,可能会有4种值,即'啥也没有','PRI','UNI','MUL'1. 如果Key是空的, 那么该列值的可以重复, 表示该列没有索引, 或者是一个非唯一的复合索引的非前导列2. ...

  4. 【Unity3D】枪战游戏—弹孔设置

    以子弹为原点,发射射线,如果射线检测到障碍物,则返回射线与障碍物的碰撞点 在该点处实例化出弹孔贴图 void Update () { transform.Translate (Vector3.forw ...

  5. iOS - GIF图的完美拆解、合成、显示

    转:http://blog.csdn.net/marujunyy/article/details/14455699 最近由于项目需要,需要先把gif图拆解开,然后在每一张图片上添加一些图片和文字,最后 ...

  6. Linux Kernel 4.8分支第4个候选版本发布

    导读 今天,大神Linus Torvalds宣布了Linux 4.8分支的第四个候选版本,该候选版本在提供常规驱动更新.架构改善和部分KVM调整之外最大的新功能就是修复了英特尔Skylake电源管理B ...

  7. Mysql 多表联合查询效率分析及优化

    1. 多表连接类型 1. 笛卡尔积(交叉连接) 在MySQL中可以为CROSS JOIN或者省略CROSS即JOIN,或者使用','  如: SELECT * FROM table1 CROSS JO ...

  8. 翻译【ElasticSearch Server】第一章:开始使用ElasticSearch集群(4)

    停止ElasticSearch(Shutting down ElasticSearch) 尽管我们期望集群(或节点)终生完美运行,我们最终可能需要重启或者正确的停止它(例如,维护).有三种方式来停止E ...

  9. codeforces 681D Gifts by the List dfs+构造

    题意:给你一个森林,表示其祖先关系(自己也是自己的祖先),每个人有一个礼物(要送给这个人的固定的一个祖先) 让你构造一个序列,使得的对于每个人,这个序列中第一个出现的他的祖先,是他要送礼物的的那个祖先 ...

  10. 软件测试技术(四)——闰年判断器+ int.Parse错误如何解决

    目标程序 本次所测试的目标程序是一个闰年判断器,我们知道,一般情况下年份被4整除就可以了,但是如果遇到百年的时候还需要被400整除,于是有了如下的逻辑判断: bool isRunNian = fals ...