首先看一下.NET 中的基元类型,如下表:

C# Type      | .NET Framework Type
-------------| ----------------------
bool | System.Boolean
byte | System.Byte
sbyte | System.SByte
char | System.Char
decimal | System.Decimal
double | System.Double
float | System.Single
int | System.Int32
uint | System.UInt32
long | System.Int64
ulong | System.UInt64
object | System.Object
short | System.Int16
ushort | System.UInt16
string | System.String

网上已经无数的人问起这两个写到代码中的差异。 常见的回答是没有差异,因为生成的IL代码是一样的(还有人说基元类型只是个别名)。
比如这样一个简单的Class:

class Demo
{
int i =100;
System.Int32 j = 200;
}

生成的Il代码

IL_0000:  ldarg.0
IL_0001: ldc.i4.s 64
IL_0003: stfld Demo.i
IL_0008: ldarg.0
IL_0009: ldc.i4 C8 00 00 00
IL_000E: stfld Demo.j
IL_0013: ldarg.0
IL_0014: call System.Object..ctor
IL_0019: nop
IL_001A: ret

可以看到i、j对应的IL指令是一样的。 所以这个说法是问题不大的。

等等, IL一样就一样么? 运行时是这样的,但是编译时呢?
让我们看看编译器怎么对待它们吧。(因为之前微软的编译器是不开源的,所以也就不知道他们的文法,现在新的编译器Roslyn已经开源了我们获取这个答案也就容易了)。

就按照刚才的那个Class进行文法解析, 你可以获取到的文法表达式如下:

SyntaxFactory.CompilationUnit()
.WithMembers(
SyntaxFactory.SingletonList<MemberDeclarationSyntax>(
SyntaxFactory.ClassDeclaration(
@"Demo")
.WithMembers(
SyntaxFactory.List<MemberDeclarationSyntax>(
new MemberDeclarationSyntax[]{
SyntaxFactory.FieldDeclaration(
SyntaxFactory.VariableDeclaration(
SyntaxFactory.PredefinedType(
SyntaxFactory.Token(
SyntaxKind.IntKeyword)))
.WithVariables(
SyntaxFactory.SingletonSeparatedList<VariableDeclaratorSyntax>(
SyntaxFactory.VariableDeclarator(
SyntaxFactory.Identifier(
@"i"))
.WithInitializer(
SyntaxFactory.EqualsValueClause(
SyntaxFactory.LiteralExpression(
SyntaxKind.NumericLiteralExpression,
SyntaxFactory.Literal(
SyntaxFactory.TriviaList(),
@"100",
100,
SyntaxFactory.TriviaList()))))))),
SyntaxFactory.FieldDeclaration(
SyntaxFactory.VariableDeclaration(
SyntaxFactory.QualifiedName(
SyntaxFactory.IdentifierName(
@"System"),
SyntaxFactory.IdentifierName(
@"Int32")))
.WithVariables(
SyntaxFactory.SingletonSeparatedList<VariableDeclaratorSyntax>(
SyntaxFactory.VariableDeclarator(
SyntaxFactory.Identifier(
@"j"))
.WithInitializer(
SyntaxFactory.EqualsValueClause(
SyntaxFactory.LiteralExpression(
SyntaxKind.NumericLiteralExpression,
SyntaxFactory.Literal(
SyntaxFactory.TriviaList(),
@"200",
200,
SyntaxFactory.TriviaList())))))))}))))
.NormalizeWhitespace()

的确一大坨, 但是语义相当可读。
这里的int被解析成了

SyntaxFactory.PredefinedType(SyntaxFactory.Token(SyntaxKind.IntKeyword))

System.Int32 被解析成了

SyntaxFactory.QualifiedName(SyntaxFactory.IdentifierName(@"System"),
SyntaxFactory.IdentifierName(@"Int32"))

看到差异了吧。 在看看这里语法定义的继承结构吧。

Object (in System) mscorlib, Version=4.0.0.0
SyntaxNode (in Microsoft.CodeAnalysis)
CSharpSyntaxNode (in Microsoft.CodeAnalysis.CSharp)
ExpressionSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
TypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
ArrayTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
BaseClassWithArgumentsSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
NameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
AliasQualifiedNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
QualifiedNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
SimpleNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
GenericNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
IdentifierNameSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
NullableTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
OmittedTypeArgumentSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
PointerTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)
PredefinedTypeSyntax (in Microsoft.CodeAnalysis.CSharp.Syntax)

从这个树形结构上就能判断以前有人说是只是个别名就是个理解错误了。

当然.NET为了避免出现这样的情况被编译通过

public void Print(int a){}

public void Print(Int32 a){}

对当前文法还会进行转换的。 解析器里的定义了特殊类型待遇。 我摘抄一下特殊类型的定义。

// Copyright (c) Microsoft Open Technologies, Inc.  All Rights Reserved.  Licensed under the Apache License, Version 2.0.  See License.txt in the project root for license information.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.CompilerServices; namespace Microsoft.CodeAnalysis
{
/// <summary>
/// Specifies the Ids of special runtime types.
/// </summary>
/// <remarks>
/// Only types explicitly mentioned in "Co-located core types" spec
/// (http://devdiv/sites/docs/Dev11/CLR/Specs/CoreFx/Co-located%20core%20types.docx)
/// can be in this enum.
/// The following things should be in sync:
/// 1) SpecialType enum
/// 2) names in SpecialTypes.EmittedNames array.
/// </remarks>
public enum SpecialType : sbyte
{
/// <summary>
/// OIndicated Non-sepecial type (default value).
/// </summary>
None = 0, /// <summary>
/// Indicates that the type is <see cref="object"/>.
/// </summary>
System_Object, /// <summary>
/// Indicates that the type is <see cref="Enum"/>.
/// </summary>
System_Enum, /// <summary>
/// Indicates that the type is <see cref="MulticastDelegate"/>.
/// </summary>
System_MulticastDelegate, /// <summary>
/// Indicates that the type is <see cref="Delegate"/>.
/// </summary>
System_Delegate, /// <summary>
/// Indicates that the type is <see cref="ValueType"/>.
/// </summary>
System_ValueType, /// <summary>
/// Indicates that the type is <see cref="void"/>.
/// </summary>
System_Void, /// <summary>
/// Indicates that the type is <see cref="bool"/>.
/// </summary>
System_Boolean, /// <summary>
/// Indicates that the type is <see cref="char"/>.
/// </summary>
System_Char, /// <summary>
/// Indicates that the type is <see cref="sbyte"/>.
/// </summary>
System_SByte, /// <summary>
/// Indicates that the type is <see cref="byte"/>.
/// </summary>
System_Byte, /// <summary>
/// Indicates that the type is <see cref="short"/>.
/// </summary>
System_Int16, /// <summary>
/// Indicates that the type is <see cref="ushort"/>.
/// </summary>
System_UInt16, /// <summary>
/// Indicates that the type is <see cref="int"/>.
/// </summary>
System_Int32, /// <summary>
/// Indicates that the type is <see cref="uint"/>.
/// </summary>
System_UInt32, /// <summary>
/// Indicates that the type is <see cref="long"/>.
/// </summary>
System_Int64, /// <summary>
/// Indicates that the type is <see cref="ulong"/>.
/// </summary>
System_UInt64, /// <summary>
/// Indicates that the type is <see cref="decimal"/>.
/// </summary>
System_Decimal, /// <summary>
/// Indicates that the type is <see cref="float"/>.
/// </summary>
System_Single, /// <summary>
/// Indicates that the type is <see cref="double"/>.
/// </summary>
System_Double, /// <summary>
/// Indicates that the type is <see cref="string"/>.
/// </summary>
System_String, /// <summary>
/// Indicates that the type is <see cref="IntPtr" />.
/// </summary>
System_IntPtr, /// <summary>
/// Indicates that the type is <see cref="UIntPtr"/>.
/// </summary>
System_UIntPtr, /// <summary>
/// Indicates that the type is <see cref="Array"/>.
/// </summary>
System_Array, /// <summary>
/// Indicates that the type is <see cref="IEnumerable"/>.
/// </summary>
System_Collections_IEnumerable, /// <summary>
/// Indicates that the type is <see cref="IEnumerable{T}"/>.
/// </summary>
System_Collections_Generic_IEnumerable_T, // Note: IEnumerable<int> (i.e. constructed type) has no special type /// <summary>
/// Indicates that the type is <see cref="IList{T}"/>.
/// </summary>
System_Collections_Generic_IList_T, /// <summary>
/// Indicates that the type is <see cref="ICollection{T}"/>.
/// </summary>
System_Collections_Generic_ICollection_T, /// <summary>
/// Indicates that the type is <see cref="IEnumerator"/>.
/// </summary>
System_Collections_IEnumerator, /// <summary>
/// Indicates that the type is <see cref="IEnumerator{T}"/>.
/// </summary>
System_Collections_Generic_IEnumerator_T, /// <summary>
/// Indicates that the type is <see cref="IReadOnlyList{T}"/>.
/// </summary>
System_Collections_Generic_IReadOnlyList_T, /// <summary>
/// Indicates that the type is <see cref="IReadOnlyCollection{T}"/>.
/// </summary>
System_Collections_Generic_IReadOnlyCollection_T, /// <summary>
/// Indicates that the type is <see cref="Nullable{T}"/>.
/// </summary>
System_Nullable_T, /// <summary>
/// Indicates that the type is <see cref="DateTime"/>.
/// </summary>
System_DateTime, /// <summary>
/// Indicates that the type is <see cref="IsVolatile"/>.
/// </summary>
System_Runtime_CompilerServices_IsVolatile, /// <summary>
/// Indicates that the type is <see cref="IDisposable"/>.
/// </summary>
System_IDisposable, /// <summary>
/// Indicates that the type is <see cref="T:System.TypedReference"/>.
/// </summary>
System_TypedReference, /// <summary>
/// Indicates that the type is <see cref="T:System.ArgIterator"/>.
/// </summary>
System_ArgIterator, /// <summary>
/// Indicates that the type is <see cref="T:System.RuntimeArgumentHandle"/>.
/// </summary>
System_RuntimeArgumentHandle, /// <summary>
/// Indicates that the type is <see cref="RuntimeFieldHandle"/>.
/// </summary>
System_RuntimeFieldHandle, /// <summary>
/// Indicates that the type is <see cref="RuntimeMethodHandle"/>.
/// </summary>
System_RuntimeMethodHandle, /// <summary>
/// Indicates that the type is <see cref="RuntimeTypeHandle"/>.
/// </summary>
System_RuntimeTypeHandle, /// <summary>
/// Indicates that the type is <see cref="IAsyncResult"/>.
/// </summary>
System_IAsyncResult, /// <summary>
/// Indicates that the type is <see cref="AsyncCallback"/>.
/// </summary>
System_AsyncCallback, /// <summary>
/// Count of special types. This is not a count of enum members.
/// </summary>
Count = System_AsyncCallback
}
}

这些类型都是优待的, 最终会Emit到IL指令。


结论是: 基元类型跟BCL中对应的类型都将在文法解析生成到同一类型定义上, 特殊类型的定义被最终Emit到IL上。
如果从编译性能角度考虑,基元类型会占那么一点点优势。

谈谈C#基元类型的更多相关文章

  1. 重温CLR(四)基元类型、引用类型、值类型

    编程语言的基元类型 编译器直接支持的数据类型称为基元类型(primitive type).基元类型直接映射到framework类型(fcl)中存在的类型. 下表列出fcl类型 从另一个角度,可以认为C ...

  2. 【深入.NET平台】浅谈.NET Framework基元类型

    什么是基元类型? 初学者可能很少听说过这个名词,但是平时用得最多的肯定是基元类型.先看下面两行代码: System.Int32 a = ; ;  上面两行代码都表示声明一个int类型的变量,但在平时写 ...

  3. CLR:基元类型、引用类型和值类型

    最新更新请访问: http://denghejun.github.io   前言 今天重新看了下关于CLR基元类型的东西,觉得还是有必要将其记录下来,毕竟这是理解CLR成功 之路上的重要一步,希望你也 ...

  4. 《CLR via C#》读书笔记--基元类型、引用类型和值类型

    编程语言的基元类型 编译器直接支持的数据类型称为基元类型.基元类型直接映射到Framework类库中存在的类型.例如:C#中的int直接映射到System.Int32类型.下表给出了C#基元类型与对应 ...

  5. CLR via C#(02)-基元类型、引用类型、值类型

    http://www.cnblogs.com/qq0827/p/3281150.html 一. 基元类型 编译器能够直接支持的数据类型叫做基元类型.例如int, string等.基元类型和.NET框架 ...

  6. 《CLR via C#》读书笔记(5)基元类型、引用类型和值类型

    5.1 基元类型 编译器直接支持的数据类型称为基元类型(primitive type). 以下4行到吗生成完全相同的IL int a = 0; //最方便的语法 System.Int32 b = 0; ...

  7. 【CLR Via C#】第5章 基元类型、引用类型、值类型

    第二遍看这本书,决定记录一下加深印象. 1,基元类型 什么事基元类型?基元类型是直接映射到FrameWork类库(FCL)中存在的类型,编译器直接支持的数据类型.比如int直接映射到System.In ...

  8. CLR via C#深解笔记三 - 基元类型、引用类型和值类型 | 类型和成员基础 | 常量和字段

    编程语言的基元类型   某些数据类型如此常用,以至于许多编译器允许代码以简化的语法来操纵它们. System.Int32 a = new System.Int32();  // a = 0 a = 1 ...

  9. 【C#进阶系列】05 基元类型、引用类型和值类型

     基元类型和FCL类型 FCL类型就是指Int32这种类型,这是CLR支持的类型. 而基元类型就是指int这种类型,这是C#编译器支持的,实际上在编译后,还是会被转为Int32类型. 而且学过C的朋友 ...

随机推荐

  1. Android下高斯模糊的算法和demo

    采用纯java和RenderScript两种方式来做高斯算法. 也可以用NDK来做,想试试的可以参考: http://stackoverflow.com/questions/2067955/fast- ...

  2. 【转】.. Android应用内存泄露分析、改善经验总结

    原文网址:http://wetest.qq.com/lab/view/107.html?from=ads_test2_qqtips&sessionUserType=BFT.PARAMS.194 ...

  3. mysql中出现的Data truncated for column

    mysql中想一个数据库中插入一条记录时,有可能因为好多原因,会出现Data truncated for column XXXXX的错误,这是因为你的数据类型的长度不一致导致的,仔细查看一下数据类型的 ...

  4. 硬盘结构介绍--mbr及分区

    硬盘刚买来使用时需要经过分区然后格式化才能够使用,硬盘经过分区后,分区软件便会写一个主引导扇区,这个扇区位于硬盘的 0 磁道 0 柱面第1扇区(即0区)(注意:该扇区为隐含扇区,0道0面的全部扇区均为 ...

  5. POJ 1573 Robot Motion

    Robot Motion Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12978   Accepted: 6290 Des ...

  6. Hadoop中的InputFormat解析

    1.InputFormat InputFormat是Hadoop平台上Mapreduce输入的规范,仅有两个抽象方法. List<InputSplit> getSplits(), 获取由输 ...

  7. 回调函数、Java接口回调 总结

    谈到回调,我们得先从回调函数说起,什么叫回调函数呢? 回调函数是什么? 百度百科的解释:回调函数就是一个通过函数指针调用的函数.如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用为调用 ...

  8. javascript 面向对象制作坦克大战 (一)

    PS:这个坦克大战是在网上下的一段源码之后,自己进行的重写.   写这个的目的是为了巩固自己这段时间对js的学习.整理到博客上,算是对自己近端时间学习js的一个整理. 同时也希望可以帮助到学习js的园 ...

  9. HTML 表单提交 的简单代码

    <form action="check.php" method="post"> 用户名:<input type="text" ...

  10. 基于MFC和opencv的FFT

    在网上折腾了一阵子,终于把这个程序写好了,程序是基于MFC的,图像显示的部分和获取图像的像素点是用到了opencv的一些函数,不过FFT算法没有用opencv的(呵呵,老师不让),网上的二维的FFT程 ...