Python dictionary implementation

http://www.laurentluce.com/posts/python-dictionary-implementation/

August 29, 2011

This post describes how dictionaries are implemented in the Python language.

Dictionaries are indexed by keys and they can be seen as associative arrays. Let’s add 3 key/value pairs to a dictionary:

1 >>> d = {'a': 1, 'b': 2}
2 >>> d['c'] = 3
3 >>> d
4 {'a': 1, 'b': 2, 'c': 3}

The values can be accessed this way:

01 >>> d['a']
02 1
03 >>> d['b']
04 2
05 >>> d['c']
06 3
07 >>> d['d']
08 Traceback (most recent call last):
09   File "<stdin>", line 1, in <module>
10 KeyError: 'd'

The key ‘d’ does not exist so a KeyError exception is raised.

Hash tables

Python dictionaries are implemented using hash tables. It is an array whose indexes are obtained using a hash function on the keys. The goal of a hash function is to distribute the keys evenly in the array. A good hash function minimizes the number of collisions e.g. different keys having the same hash. Python does not have this kind of hash function. Its most important hash functions (for strings and ints) are very regular in common cases:

1 >>> map(hash, (0, 1, 2, 3))
2 [0, 1, 2, 3]
3 >>> map(hash, ("namea""nameb""namec""named"))
4 [-1658398457, -1658398460, -1658398459, -1658398462]

We are going to assume that we are using strings as keys for the rest of this post. The hash function for strings in Python is defined as:

01 arguments: string object
02 returns: hash
03 function string_hash:
04     if hash cached:
05         return it
06     set len to string's length
07     initialize var p pointing to 1st char of string object
08     set x to value pointed by p left shifted by 7 bits
09     while len >= 0:
10         set var x to (1000003 * x) xor value pointed by p
11         increment pointer p
12     set x to x xor length of string object
13     cache x as the hash so we don't need to calculate it again
14     return x as the hash

If you run hash(‘a’) in Python, it will execute string_hash() and return 12416037344. Here we assume we are using a 64-bit machine.

If an array of size x is used to store the key/value pairs then we use a mask equal to x-1 to calculate the slot index of the pair in the array. This makes the computation of the slot index fast. The probability to find an empty slot is high due to the resizing mechanism described below. This means that having a simple computation makes sense in most of the cases. If the size of the array is 8, the index for ‘a’ will be: hash(‘a’) & 7 = 0. The index for ‘b’ is 3, the index for ‘c’ is 2, the index for ‘z’ is 3 which is the same as ‘b’, here we have a collision.

We can see that the Python hash function does a good job when the keys are consecutive which is good because it is quite common to have this type of data to work with. However, once we add the key ‘z’, there is a collision because it is not consecutive enough.

We could use a linked list to store the pairs having the same hash but it would increase the lookup time e.g. not O(1) average anymore. The next section describes the collision resolution method used in the case of Python dictionaries.

Open addressing

Open addressing is a method of collision resolution where probing is used. In case of ‘z’, the slot index 3 is already used in the array so we need to probe for a different index to find one which is not already used. Adding a key/value pair will average O(1) and the lookup operation too.

A quadratic probing sequence is used to find a free slot. The code is the following:

1 j = (5*j) + 1 + perturb;
2 perturb >>= PERTURB_SHIFT;
3 use j % 2**i as the next table index;

Recurring on 5*j+1 quickly magnifies small differences in the bits that didn’t affect the initial index. The variable “perturb” gets the other bits of the hash code into play.

Just out of curiosity, let’s look at the probing sequence when the table size is 32 and j = 3.
3 -> 11 -> 19 -> 29 -> 5 -> 6 -> 16 -> 31 -> 28 -> 13 -> 2…

You can read more about this probing sequence by looking at the source code of dictobject.c. A detailed explanation of the probing mechanism can be found at the top of the file.

Now, let’s look at the Python internal code along with an example.

Dictionary C structures

The following C structure is used to store a dictionary entry: key/value pair. The hash, key and value are stored. PyObject is the base class of the Python objects.

1 typedef struct {
2     Py_ssize_t me_hash;
3     PyObject *me_key;
4     PyObject *me_value;
5 } PyDictEntry;

The following structure represents a dictionary. ma_fill is the number of used slots + dummy slots. A slot is marked dummy when a key pair is removed. ma_used is the number of used slots (active). ma_mask is equal to the array’s size minus 1 and is used to calculate the slot index. ma_table is the array and ma_smalltable is the initial array of size 8.

01 typedef struct _dictobject PyDictObject;
02 struct _dictobject {
03     PyObject_HEAD
04     Py_ssize_t ma_fill;
05     Py_ssize_t ma_used;
06     Py_ssize_t ma_mask;
07     PyDictEntry *ma_table;
08     PyDictEntry *(*ma_lookup)(PyDictObject *mp, PyObject *key, long hash);
09     PyDictEntry ma_smalltable[PyDict_MINSIZE];
10 };

Dictionary initialization

When you first create a dictionary, the function PyDict_New() is called. I removed some of the lines and converted the C code to pseudocode to concentrate on the key concepts.

1 returns new dictionary object
2 function PyDict_New:
3     allocate new dictionary object
4     clear dictionary's table
5     set dictionary's number of used slots + dummy slots (ma_fill) to 0
6     set dictionary's number of active slots (ma_used) to 0
7     set dictionary's mask (ma_value) to dictionary size - 1 = 7
8     set dictionary's lookup function to lookdict_string
9     return allocated dictionary object

Adding items

When a new key/value pair is added, PyDict_SetItem() is called. This function takes a pointer to the dictionary object and the key/value pair. It checks if the key is a string and calculates the hash or reuses the one cached if it exists. insertdict() is called to add the new key/value pair and the dictionary is resized if the number of used slots + dummy slots is greater than 2/3 of the array’s size.
Why 2/3? It is to make sure the probing sequence can find a free slot fast enough. We will look at the resizing function later.

01 arguments: dictionary, key, value
02 returns: 0 if OK or -1
03 function PyDict_SetItem:
04     if key's hash cached:
05         use hash
06     else:
07         calculate hash
08     call insertdict with dictionary object, key, hash and value
09     if key/value pair added successfully and capacity over 2/3:
10         call dictresize to resize dictionary's table

inserdict() uses the lookup function lookdict_string() to find a free slot. This is the same function used to find a key. lookdict_string() calculates the slot index using the hash and the mask values. If it cannot find the key in the slot index = hash & mask, it starts probing using the loop described above, until it finds a free slot. At the first probing try, if the key is null, it returns the dummy slot if found during the first lookup. This gives priority to re-use the previously deleted slots.

We want to add the following key/value pairs: {‘a’: 1, ‘b’: 2′, ‘z’: 26, ‘y’: 25, ‘c’: 5, ‘x’: 24}. This is what happens:

A dictionary structure is allocated with internal table size of 8.

  • PyDict_SetItem: key = ‘a’, value = 1
    • hash = hash(‘a’) = 12416037344
    • insertdict
      • lookdict_string
        • slot index = hash & mask = 12416037344 & 7 = 0
        • slot 0 is not used so return it
      • init entry at index 0 with key, value and hash
      • ma_used = 1, ma_fill = 1
  • PyDict_SetItem: key = ‘b’, value = 2
    • hash = hash(‘b’) = 12544037731
    • insertdict
      • lookdict_string
        • slot index = hash & mask = 12544037731 & 7 = 3
        • slot 3 is not used so return it
      • init entry at index 3 with key, value and hash
      • ma_used = 2, ma_fill = 2
  • PyDict_SetItem: key = ‘z’, value = 26
    • hash = hash(‘z’) = 15616046971
    • insertdict
      • lookdict_string
        • slot index = hash & mask = 15616046971 & 7 = 3
        • slot 3 is used so probe for a different slot: 5 is free
      • init entry at index 5 with key, value and hash
      • ma_used = 3, ma_fill = 3
  • PyDict_SetItem: key = ‘y’, value = 25
    • hash = hash(‘y’) = 15488046584
    • insertdict
      • lookdict_string
        • slot index = hash & mask = 15488046584 & 7 = 0
        • slot 0 is used so probe for a different slot: 1 is free
      • init entry at index 1 with key, value and hash
      • ma_used = 4, ma_fill = 4
  • PyDict_SetItem: key = ‘c’, value = 3
    • hash = hash(‘c’) = 12672038114
    • insertdict
      • lookdict_string
        • slot index = hash & mask = 12672038114 & 7 = 2
        • slot 2 is free so return it
      • init entry at index 2 with key, value and hash
      • ma_used = 5, ma_fill = 5
  • PyDict_SetItem: key = ‘x’, value = 24
    • hash = hash(‘x’) = 15360046201
    • insertdict
      • lookdict_string
        • slot index = hash & mask = 15360046201 & 7 = 1
        • slot 1 is used so probe for a different slot: 7 is free
      • init entry at index 7 with key, value and hash
      • ma_used = 6, ma_fill = 6

This is what we have so far:

6 slots on 8 are used now so we are over 2/3 of the array’s capacity. dictresize() is called to allocate a larger array. This function also takes care of copying the old table entries to the new table.

dictresize() is called with minused = 24 in our case which is 4 * ma_used. 2 * ma_used is used when the number of used slots is very large (greater than 50000). Why 4 times the number of used slots? It reduces the number of resize steps and it increases sparseness.

The new table size needs to be greater than 24 and it is calculated by shifting the current size 1 bit left until it is greater than 24. It ends up being 32 e.g. 8 -> 16 -> 32.

This is what happens with our table during resizing: a new table of size 32 is allocated. Old table entries are inserted into the new table using the new mask value which is 31. We end up with the following:

Removing items

PyDict_DelItem() is called to remove an entry. The hash for this key is calculated and the lookup function is called to return the entry. The slot is now a dummy slot.

We want to remove the key ‘c’ from our dictionary. We end up with the following array:

Python dictionary implementation的更多相关文章

  1. Python dictionary 字典 常用法

    Python dictionary 字典 常用法 d = {} d.has_key(key_in)       # if has the key of key_in d.keys()          ...

  2. PythonStudy——Python字典底层实现原理 The underlying implementation principle of Python dictionary

    在Python中,字典是通过散列表或说哈希表实现的.字典也被称为关联数组,还称为哈希数组等.也就是说,字典也是一个数组,但数组的索引是键经过哈希函数处理后得到的散列值.哈希函数的目的是使键均匀地分布在 ...

  3. sort a Python dictionary by value

    首先要明确一点,Python的dict本身是不能被sort的,更明确地表达应该是"将一个dict通过操作转化为value有序的列表" 有以下几种方法: 1. import oper ...

  4. python : dictionary changed size during iteration

    1. 错误方式 #这里初始化一个dict >>> d = {'a':1, 'b':0, 'c':1, 'd':0} #本意是遍历dict,发现元素的值是0的话,就删掉 >> ...

  5. python dictionary的遍历

    d = {'x':1, 'y':3, 'z':2} for k in d:    print d[k] 直接遍历k in d的话,遍历的是dictionary的keys. 2 字典的键可以是任何不可变 ...

  6. Python dictionary 字典

    Python字典是另一种可变容器模型,且可存储任意类型对象,如字符串.数字.元组等其他容器模型. 一.创建字典字典由键和对应值成对组成.字典也被称作关联数组或哈希表.基本语法如下: dict = {' ...

  7. How to create a Python dictionary with double quotes as default quote format?

    couples = [ ['jack', 'ilena'], ['arun', 'maya'], ['hari', 'aradhana'], ['bill', 'samantha']] pairs = ...

  8. Python:dictionary

    # Python3.4 Eclipse+PyDev 打开Eclipse,找到Help菜单栏,进入Install New Software…选项. # 点击work with:输入框的旁边点击Add…, ...

  9. Think Python - Chapter 11 - Dictionaries

    Dictionaries A dictionary is like a list, but more general. In a list, the indices have to be intege ...

随机推荐

  1. gradle 学习

    gradle是个构建工具,目的是为了更方便的管理项目. 学习gradle看下面的资料: 中文资料,总共六篇,看完之后基础差不多了: 简介 第一个Java项目 依赖管理 创建二进制发布版本 创建多项目构 ...

  2. SSH 连接慢的解决方案详解

    SSH 连接慢的解决方案详解 http://www.codeceo.com/article/ssh-slow.html

  3. WinForm使用webbrowser爬取数据,中文乱码问题

    使用winform中的webbrowser抓取某个网站的数据时,遇到中文乱码的问题: 当时使用的获取网页内容的代码为: webBrowser1.DocumentText.ToString(); 不管我 ...

  4. char[]数组与char *指针的区别

    char[]数组与char *指针的区别 问题描述 虽然很久之前有看过关于char指针和char数组的区别,但是当时没有系统的整理,到现在频繁遇到,在string,char[], char *中迷失了 ...

  5. Android和iOS隐藏状态条

    Android: 在 AndroidManifest.xml 里 <activity android:theme="@android:style/Theme.NoTitleBar.Fu ...

  6. C#冒泡排序详解

    今天写一简单的冒泡排序,带有详细的中文注释,新手一定要看看! 因为这是找工作面试时经常 笔试 要考的题目. using System; using System.Collections.Generic ...

  7. 我的web前端修炼之路从此开始

    看过一篇文章,上面说过要想学习一门新技术,从什么时候开始都是不晚的.但对于一名大四的学生,只会一点简单的网页架构,只懂得HTML,CSS,JavaScript简单的一点皮毛,却怎么也说不过去.但也是这 ...

  8. C语言——递归练习

    1.炮弹一样的球状物体,能够堆积成一个金字塔,在顶端有一个炮弹,它坐落在一个4个炮弹组成的层面上,而这4个炮弹又坐落在一个9个炮弹组成的层面上,以此类推.写一个递归函数CannonBall,这个函数把 ...

  9. JAVA与多线程开发(线程基础、继承Thread类来定义自己的线程、实现Runnable接口来解决单继承局限性、控制多线程程并发)

    实现线程并发有两种方式:1)继承Thread类:2)实现Runnable接口. 线程基础 1)程序.进程.线程:并行.并发. 2)线程生命周期:创建状态(new一个线程对象).就绪状态(调用该对象的s ...

  10. nservicebus教程-目录

    表的内容 开始 坚持NServiceBus 扩展 每天 举办 管理和监控 发布订阅 长时间运行的流程 定制 版本控制 常见问题解答 样品 开始 概述 NServiceBus一步一步向导 架构原则 事务 ...