3887 - Slim Span
Time limit: 3.000 seconds

Given an undirected weighted graph G <tex2html_verbatim_mark>, you should find one of spanning trees specified as follows.

The graph G <tex2html_verbatim_mark>is an ordered pair (VE) <tex2html_verbatim_mark>, where V <tex2html_verbatim_mark>is a set of vertices {v1v2,..., vn} <tex2html_verbatim_mark>and E <tex2html_verbatim_mark>is a set of undirected edges {e1e2,..., em} <tex2html_verbatim_mark>. Each edge e  E <tex2html_verbatim_mark>has its weight w(e) <tex2html_verbatim_mark>.

A spanning tree T <tex2html_verbatim_mark>is a tree (a connected subgraph without cycles) which connects all the n <tex2html_verbatim_mark>vertices with n - 1 <tex2html_verbatim_mark>edges. The slimness of a spanning tree T <tex2html_verbatim_mark>is defined as the difference between the largest weight and the smallest weight among the n - 1 <tex2html_verbatim_mark>edges of T <tex2html_verbatim_mark>.

<tex2html_verbatim_mark>

For example, a graph G <tex2html_verbatim_mark>in Figure 5(a) has four vertices {v1v2v3v4} <tex2html_verbatim_mark>and five undirected edges {e1e2,e3e4e5} <tex2html_verbatim_mark>. The weights of the edges are w(e1) = 3 <tex2html_verbatim_mark>, w(e2) = 5 <tex2html_verbatim_mark>, w(e3) = 6 <tex2html_verbatim_mark>, w(e4) = 6 <tex2html_verbatim_mark>, w(e5) = 7 <tex2html_verbatim_mark>as shown in Figure 5(b).

=6in <tex2html_verbatim_mark>

There are several spanning trees for G <tex2html_verbatim_mark>. Four of them are depicted in Figure 6(a)∼(d). The spanning tree Ta<tex2html_verbatim_mark>in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta <tex2html_verbatim_mark>is 4. The slimnesses of spanning trees Tb <tex2html_verbatim_mark>, Tc <tex2html_verbatim_mark>and Td <tex2html_verbatim_mark>shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td <tex2html_verbatim_mark>in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n <tex2html_verbatim_mark>m <tex2html_verbatim_mark>
a1 <tex2html_verbatim_mark>b1 <tex2html_verbatim_mark>w1 <tex2html_verbatim_mark>
 <tex2html_verbatim_mark>
am <tex2html_verbatim_mark>bm <tex2html_verbatim_mark>wm <tex2html_verbatim_mark>

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space.

n <tex2html_verbatim_mark>is the number of the vertices and m <tex2html_verbatim_mark>the number of the edges. You can assume 2n100 <tex2html_verbatim_mark>and 0mn(n - 1)/2<tex2html_verbatim_mark>. ak <tex2html_verbatim_mark>and bk <tex2html_verbatim_mark>(k = 1,..., m) <tex2html_verbatim_mark>are positive integers less than or equal to n <tex2html_verbatim_mark>, which represent the two verticesvak <tex2html_verbatim_mark>and vbk <tex2html_verbatim_mark>connected by the k <tex2html_verbatim_mark>-th edge ek <tex2html_verbatim_mark>. wk <tex2html_verbatim_mark>is a positive integer less than or equal to 10000, which indicates the weight of ek <tex2html_verbatim_mark>. You can assume that the graph G = (VE) <tex2html_verbatim_mark>is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, `-1' should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50 枚举最小边,求得MST
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
#define INF 0x3f3f3f3f
#define N 110
#define M 100010 struct Edge
{
int u,v,w;
bool operator <(const Edge &t)const
{
return w<t.w;
}
}edge[M]; int n,m;
int f[N]; void init()
{
for(int i=;i<=n;i++) f[i]=i;
}
int Find(int x)
{
if(x!=f[x]) f[x]=Find(f[x]);
return f[x];
}
bool UN(int x,int y)
{
x=Find(x);
y=Find(y);
if(x==y) return ;
f[x]=y;
return ;
}
int kruskal(int s)
{
init();
int ret;
for(int i=s;i<=m;i++)
{
if(UN(edge[i].u,edge[i].v)) ret=edge[i].w;
}
int cnt=;
for(int i=;i<=n;i++) if(f[i]==i) cnt++;
if(cnt>) return -;
return ret;
}
int main()
{
int ans;
while(scanf("%d%d",&n,&m),n||m)
{
ans=INF;
for(int i=;i<=m;i++) scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w);
sort(edge+,edge+m+);
for(int i=;i<=m;i++)
{
int t=kruskal(i);
if(t==-) break;
ans=min(ans,t-edge[i].w);
}
if(ans==INF) ans=-;
printf("%d\n",ans);
}
return ;
}

[LA 3887] Slim Span的更多相关文章

  1. LA 3887 - Slim Span 枚举+MST

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  2. uvalive 3887 Slim Span

    题意: 一棵生成树的苗条度被定义为最长边与最小边的差. 给出一个图,求其中生成树的最小苗条度. 思路: 最开始想用二分,始终想不到二分终止的条件,所以尝试暴力枚举最小边的长度,然后就AC了. 粗略估计 ...

  3. 最小生成树POJ3522 Slim Span[kruskal]

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Descrip ...

  4. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  5. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  6. POJ-3522 Slim Span(最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 8633   Accepted: 4608 Descrip ...

  7. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

  8. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  9. UVALive-3887 Slim Span (kruskal)

    题目大意:定义无向图生成树的最大边与最小边的差为苗条度,找出苗条度最小的生成树的苗条度. 题目分析:先将所有边按权值从小到大排序,在连续区间[L,R]中的边如果能构成一棵生成树,那么这棵树一定有最小的 ...

随机推荐

  1. 【HDOJ】【3555】Bomb

    数位DP cxlove基础数位DP第二题 与上题基本相同(其实除了变成long long以外其实更简单了……) //HDOJ 3555 #include<cmath> #include&l ...

  2. 【BZOJ】【1013】【JSOI2008】球形空间产生器sphere

    高斯消元 高斯消元模板题 /************************************************************** Problem: 1013 User: Tun ...

  3. Taxi Trip Time Winners' Interview: 3rd place, BlueTaxi

    Taxi Trip Time Winners' Interview: 3rd place, BlueTaxi This spring, Kaggle hosted two competitions w ...

  4. uva 11375

    思路是刘书上的 但是个高精度  java 大数 ~~ import java.util.*; import java.io.*; import java.math.BigInteger; public ...

  5. sql server2012 动态端口

    我们查询  exec sp_readerrorlog 0, 1, "listening" 时可以看有端口监听,有1433 1434 53698等. 这时我们可以打看配置管理器,查看 ...

  6. HDOJ 1856 More is better

    转自:wutianqi http://www.wutianqi.com/?p=1069 tag:并查集 #include <iostream> using namespace std; # ...

  7. POJ 1928

    #include <iostream> #include <algorithm> #define MAXN 3000 using namespace std; struct n ...

  8. Javascript中appendChilid()内涵

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  9. DJANGO的requirements的运用

    这里记录一下我现在项目的requirements.pip文件,安装命令为: pip install -r requirements.pip 这样一来,所有依赖,全部搞定. Django== djang ...

  10. java:接口实例

    接口:打印机接口 interface Printer { public void read(); } 函数一:佳能打印机 class CanPrinter implements Printer { p ...