分布式系统理论基础 - CAP
引言
CAP是分布式系统、特别是分布式存储领域中被讨论最多的理论,“什么是CAP定理?”在Quora 分布式系统分类下排名 FAQ 的 No.1。CAP在程序员中也有较广的普及,它不仅仅是“C、A、P不能同时满足,最多只能3选2”,以下尝试综合各方观点,从发展历史、工程实践等角度讲述CAP理论。希望大家透过本文对CAP理论有更多地了解和认识。
CAP定理
CAP由Eric Brewer在2000年PODC会议上提出[1][2],是Eric Brewer在Inktomi[3]期间研发搜索引擎、分布式web缓存时得出的关于数据一致性(consistency)、服务可用性(availability)、分区容错性(partition-tolerance)的猜想:
It is impossible for a web service to provide the three following guarantees : Consistency, Availability and Partition-tolerance.
该猜想在提出两年后被证明成立[4],成为我们熟知的CAP定理:
- 数据一致性(consistency):如果系统对一个写操作返回成功,那么之后的读请求都必须读到这个新数据;如果返回失败,那么所有读操作都不能读到这个数据,对调用者而言数据具有强一致性(strong consistency) (又叫原子性 atomic、线性一致性 linearizable consistency)[5]
- 服务可用性(availability):所有读写请求在一定时间内得到响应,可终止、不会一直等待
- 分区容错性(partition-tolerance):在网络分区的情况下,被分隔的节点仍能正常对外服务
在某时刻如果满足AP,分隔的节点同时对外服务但不能相互通信,将导致状态不一致,即不能满足C;如果满足CP,网络分区的情况下为达成C,请求只能一直等待,即不满足A;如果要满足CA,在一定时间内要达到节点状态一致,要求不能出现网络分区,则不能满足P。
C、A、P三者最多只能满足其中两个,和FLP定理一样,CAP定理也指示了一个不可达的结果(impossibility result)。

CAP的工程启示
CAP理论提出7、8年后,NoSql圈将CAP理论当作对抗传统关系型数据库的依据、阐明自己放宽对数据一致性(consistency)要求的正确性[6],随后引起了大范围关于CAP理论的讨论。
CAP理论看似给我们出了一道3选2的选择题,但在工程实践中存在很多现实限制条件,需要我们做更多地考量与权衡,避免进入CAP认识误区[7]。
1、关于 P 的理解
Partition字面意思是网络分区,即因网络因素将系统分隔为多个单独的部分,有人可能会说,网络分区的情况发生概率非常小啊,是不是不用考虑P,保证CA就好[8]。要理解P,我们看回CAP证明[4]中P的定义:
In order to model partition tolerance, the network will be allowed to lose arbitrarily many messages sent from one node to another.
网络分区的情况符合该定义,网络丢包的情况也符合以上定义,另外节点宕机,其他节点发往宕机节点的包也将丢失,这种情况同样符合定义。现实情况下我们面对的是一个不可靠的网络、有一定概率宕机的设备,这两个因素都会导致Partition,因而分布式系统实现中 P 是一个必须项,而不是可选项[9][10]。
对于分布式系统工程实践,CAP理论更合适的描述是:在满足分区容错的前提下,没有算法能同时满足数据一致性和服务可用性[11]:
In a network subject to communication failures, it is impossible for any web service to implement an atomic read/write shared memory that guarantees a response to every request.
2、CA非0/1的选择
P 是必选项,那3选2的选择题不就变成数据一致性(consistency)、服务可用性(availability) 2选1?工程实践中一致性有不同程度,可用性也有不同等级,在保证分区容错性的前提下,放宽约束后可以兼顾一致性和可用性,两者不是非此即彼[12]。

CAP定理证明中的一致性指强一致性,强一致性要求多节点组成的被调要能像单节点一样运作、操作具备原子性,数据在时间、时序上都有要求。如果放宽这些要求,还有其他一致性类型:
- 序列一致性(sequential consistency)[13]:不要求时序一致,A操作先于B操作,在B操作后如果所有调用端读操作得到A操作的结果,满足序列一致性
- 最终一致性(eventual consistency)[14]:放宽对时间的要求,在被调完成操作响应后的某个时间点,被调多个节点的数据最终达成一致
可用性在CAP定理里指所有读写操作必须要能终止,实际应用中从主调、被调两个不同的视角,可用性具有不同的含义。当P(网络分区)出现时,主调可以只支持读操作,通过牺牲部分可用性达成数据一致。
工程实践中,较常见的做法是通过异步拷贝副本(asynchronous replication)、quorum/NRW,实现在调用端看来数据强一致、被调端最终一致,在调用端看来服务可用、被调端允许部分节点不可用(或被网络分隔)的效果[15]。
3、跳出CAP
CAP理论对实现分布式系统具有指导意义,但CAP理论并没有涵盖分布式工程实践中的所有重要因素。
例如延时(latency),它是衡量系统可用性、与用户体验直接相关的一项重要指标[16]。CAP理论中的可用性要求操作能终止、不无休止地进行,除此之外,我们还关心到底需要多长时间能结束操作,这就是延时,它值得我们设计、实现分布式系统时单列出来考虑。
延时与数据一致性也是一对“冤家”,如果要达到强一致性、多个副本数据一致,必然增加延时。加上延时的考量,我们得到一个CAP理论的修改版本PACELC[17]:如果出现P(网络分区),如何在A(服务可用性)、C(数据一致性)之间选择;否则,如何在L(延时)、C(数据一致性)之间选择。
小结
以上介绍了CAP理论的源起和发展,介绍了CAP理论给分布式系统工程实践带来的启示。
CAP理论对分布式系统实现有非常重大的影响,我们可以根据自身的业务特点,在数据一致性和服务可用性之间作出倾向性地选择。通过放松约束条件,我们可以实现在不同时间点满足CAP(此CAP非CAP定理中的CAP,如C替换为最终一致性)[18][19][20]。
有非常非常多文章讨论和研究CAP理论,希望这篇对你认识和了解CAP理论有帮助。
[1] Harvest, Yield, and Scalable Tolerant Systems, Armando Fox , Eric Brewer, 1999
[2] Towards Robust Distributed Systems, Eric Brewer, 2000
[3] Inktomi's wild ride - A personal view of the Internet bubble, Eric Brewer, 2004
[4] Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web, Seth Gilbert, Nancy Lynch, 2002
[5] Linearizability: A Correctness Condition for Concurrent Objects, Maurice P. Herlihy,Jeannette M. Wing, 1990
[6] Brewer's CAP Theorem - The kool aid Amazon and Ebay have been drinking, Julian Browne, 2009
[7] CAP Theorem between Claims and Misunderstandings: What is to be Sacrificed?, Balla Wade Diack,Samba Ndiaye,Yahya Slimani, 2013
[8] Errors in Database Systems, Eventual Consistency, and the CAP Theorem, Michael Stonebraker, 2010
[9] CAP Confusion: Problems with 'partition tolerance', Henry Robinson, 2010
[10] You Can’t Sacrifice Partition Tolerance, Coda Hale, 2010
[11] Perspectives on the CAP Theorem, Seth Gilbert, Nancy Lynch, 2012
[12] CAP Twelve Years Later: How the "Rules" Have Changed, Eric Brewer, 2012
[13] How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs, Lamport Leslie, 1979
[14] Eventual Consistent Databases: State of the Art, Mawahib Elbushra , Jan Lindström, 2014
[15] Eventually Consistent, Werner Vogels, 2008
[16] Speed Matters for Google Web Search, Jake Brutlag, 2009
[17] Consistency Tradeoffs in Modern Distributed Database System Design, Daniel J. Abadi, 2012
[18] A CAP Solution (Proving Brewer Wrong), Guy's blog, 2008
[19] How to beat the CAP theorem, nathanmarz , 2011
[20] The CAP FAQ, Henry Robinson
分布式系统理论基础 - CAP的更多相关文章
- 分布式系统理论基础4:Paxos
本文转自:https://www.cnblogs.com/bangerlee/p/5655754.html 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到 ...
- 分布式系统之CAP理论杂记[转]
分布式系统之CAP理论杂记 http://www.cnblogs.com/highriver/archive/2011/09/15/2176833.html 分布式系统的CAP理论: 理论首先把分布式 ...
- 分布式系统之CAP理论杂记
分布式系统的CAP理论:理论首先把分布式系统中的三个特性进行了如下归纳:● 一致性(C):在分布式系统中的所有数据备份,在同一时刻是否同样的值.● 可用性(A):在集群中一部分节点故障后,集群整体是否 ...
- 分布式系统的CAP理论
一.CAP理论概述 一个分布式系统最多只能同时满足一致性(Consistency).可用性(Availability)和分区容错性(Partition tolerance)这三项中的两项. 二.CAP ...
- 分布式系统之CAP原理
参考链接:http://blog.csdn.net/wireless_com/article/details/79153643 CAP是什么? CAP理论,被戏称为[帽子理论].CAP理论由Eric ...
- 看完这篇,保证让你真正明白:分布式系统的CAP理论、CAP如何三选二
引言 CAP 理论,相信很多人都听过,它是指: 一个分布式系统最多只能同时满足一致性(Consistency).可用性(Availability)和分区容错性(Partition tolerance) ...
- 分布式系统开发的一些相关理论基础——CAP、ACID、BASE
本文主要讲述分布式系统开发的一些相关理论基础. 一.ACID 事务的四个特征: 1.Atomic原子性 事务必须是一个原子的操作序列单元,事务中包含的各项操作在一次执行过程中,要么全部执行成功,要么全 ...
- 分布式系统理论基础2 :CAP
本文转自:https://www.cnblogs.com/bangerlee/p/5328888.html 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到 ...
- 分布式系统理论基础8:zookeeper分布式协调服务
本文转自 https://www.cnblogs.com/bangerlee/p/5268485.html 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到 ...
随机推荐
- [APUE]UNIX进程的环境(下)
一.共享库 共享库使得可执行文件中不再需要包含常用的库函数,而只需在所有进程都可存取的存储区中保存这种库例程的一个副本.程序第一次执行的时候或第一次调用某个库函数的时候,用动态链接方法将程序与共享库函 ...
- C语言 · 字符转对比
问题描述 给定两个仅由大写字母或小写字母组成的字符串(长度介于1到10之间),它们之间的关系是以下4中情况之一: 1:两个字符串长度不等.比如 Beijing 和 Hebei 2:两个字符串不仅长度相 ...
- TODO:Laravel增加验证码
TODO:Laravel增加验证码1. 先聊聊验证码是什么,有什么作用?验证码(CAPTCHA)是"Completely Automated Public Turing test to te ...
- Partition:增加分区
在关系型 DB中,分区表经常使用DateKey(int 数据类型)作为Partition Column,每个月的数据填充到同一个Partition中,由于在Fore-End呈现的报表大多数是基于Mon ...
- UWP开发之Mvvmlight实践七:如何查找设备(Mobile模拟器、实体手机、PC)中应用的Log等文件
在开发中或者后期测试乃至最后交付使用的时候,如果应用出问题了我们一般的做法就是查看Log文件.上章也提到了查看Log文件,这章重点讲解下如何查看Log文件?如何找到我们需要的Packages安装包目录 ...
- 动手做第一个Chrome插件
Chrome插件是令人惊讶的简单,一旦你弄懂它的工作和实现原理.它是由一部分HTML,一部分Js,然后混合了一个叫做manifest.json的Json文件组合而成的整体.这意味着你可以使用你最擅长的 ...
- obj.style.z-index的正确写法
obj.style.z-index的正确写法 今天发现obj.style.z-index在js里面报错,后来才知道在js里应该把含"-"的字符写成驼峰式,例如obj.style.z ...
- WebApi基于Token和签名的验证
最近一段时间在学习WebApi,涉及到验证部分的一些知识觉得自己并不是太懂,所以来博客园看了几篇博文,发现一篇讲的特别好的,读了几遍茅塞顿开(都闪开,我要装逼了),刚开始读有些地方不理解,所以想了很久 ...
- 著名ERP厂商的SSO单点登录解决方案介绍一
SSO英文全称Single Sign On,单点登录.SSO是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统.它包括可以将这次主要的登录映射到其他应用中用于同一个用户 ...
- 计算Div标签内Checkbox个数或已被disabled的个数
先看下面的html: 计算div内的checkbox个数:$('#divmod input[type="checkbox"]').length 计算div内checkbox被dis ...