一:条件变量
  直接上最基本的两个函数,先抓主要矛盾:
//等待条件
int pthread_cond_wait(pthread_cond_t *restrict cond, pthread_mutex_t *restric mutex); :把调用线程放到所等待条件的线程列表上
:对传进来已经加过锁的互斥量解锁
:线程进入休眠状态等待被唤醒
注:、2步为原子操作 //通知条件
int pthread_cond_signal(pthread_cond_t *cond); :通知指定条件已经满足
:等待线程重新锁定互斥锁
:等待线程需要重新测试条件是否满足



 
二:生产者消费者 
  下面是一个多线程,生产者消费者问题,一个队列放暂存的数据:
 #include <iostream>
#include <queue>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h> using std::cout;
using std::endl;
using std::queue; #define N 100
#define ST 10 pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t ready = PTHREAD_COND_INITIALIZER; queue<int> que; void* threadProducer(void* arg)
{
while(true)
{
sleep(rand() % ST); cout << "Produce try in...\n";
pthread_mutex_lock(&lock);
cout << "Produce in!\n";
int source = rand() % N;
cout << "Produce " << source << endl;
que.push(source);
pthread_mutex_unlock(&lock);
cout << "Produce out\n"; pthread_cond_signal(&ready);
}
} void* threadConsumer(void* arg)
{
while(true)
{
sleep(rand() % ST); cout << "Consum try in...\n";
pthread_mutex_lock(&lock);
cout << "Consum in!\n";
while(que.empty())
{
pthread_cond_wait(&ready, &lock);
cout << "Consum from sleep\n";
}
cout << "Consum " << que.front() << endl;
que.pop();
pthread_mutex_unlock(&lock);
cout << "Consum out\n\n";
}
} int main(void)
{
pthread_t tProducer, tConsumer;
pthread_create(&tProducer, NULL, threadProducer, NULL);
pthread_create(&tConsumer, NULL, threadConsumer, NULL); pthread_join(tProducer, NULL);
pthread_join(tConsumer, NULL); exit();
}

生消

看到倒数的三四行,消费者进去了,发现没有数据了,则睡眠了,然后生产者进去生产了。




 
三:打印的例子
  下面是一个多线程的小例子,线程1打印非3的倍数,线程2打印3的倍数:
#include <iostream>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h> using std::cout;
using std::endl; pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t ready = PTHREAD_COND_INITIALIZER; int data = ; void* threadProducer(void* arg)
{
int i;
for(i = ; i < ; i++)
{
sleep(); if(i % != )
{
cout << "thread1:" << i << endl;
}
else
{
pthread_mutex_lock(&lock);
data = i;
pthread_mutex_unlock(&lock); pthread_cond_signal(&ready);
}
}
} void* threadConsumer(void* arg)
{
while(true)
{
pthread_mutex_lock(&lock);
while(data == ) //no data
pthread_cond_wait(&ready, &lock);
cout <<"thread2:" << data << endl;
if(data == )
break;
else
data = ; //empty data
pthread_mutex_unlock(&lock);
}
} int main(void)
{
pthread_t tProducer, tConsumer;
pthread_create(&tProducer, NULL, threadProducer, NULL);
pthread_create(&tConsumer, NULL, threadConsumer, NULL); pthread_join(tProducer, NULL);
pthread_join(tConsumer, NULL); exit();
}

3打印

  程序大致这样:线程1中的循环,如果i不是3的倍数就自己打印了,如果是的话,把这个数放到一个地方(由于这个地方可以被线程2发现,所以要加锁访问),然后唤醒等待数据的线程2(如果线程2还没有在等待,那么这个唤醒则丢失,这是个bug,见下),线程2被唤醒后,消费了这个3的倍数,清空数据区。

  上面提到,如果唤醒线程2的消息没有被收到,则bug。看下面的代码,也就多了38一行,让线程2睡了一会,就在它睡觉的那么一会,线程1把3的倍数往那里一扔就走了,自己再继续下两个不是3倍数的数字,这就直接输出了下面两个数字,又到了3倍数,又扔过去覆盖了之前数字:
 #include <iostream>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h> using std::cout;
using std::endl; pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t ready = PTHREAD_COND_INITIALIZER; int data = ; void* threadProducer(void* arg)
{
int i;
for(i = ; i < ; i++)
{
sleep(); if(i % != )
{
cout << "thread1:" << i << endl;
}
else
{
pthread_mutex_lock(&lock);
data = i;
pthread_mutex_unlock(&lock); pthread_cond_signal(&ready);
}
}
} void* threadConsumer(void* arg)
{
sleep();
while(true)
{
pthread_mutex_lock(&lock);
while(data == ) //no data
pthread_cond_wait(&ready, &lock);
cout <<"thread2:" << data << endl;
if(data == )
break;
else
data = ; //empty data
pthread_mutex_unlock(&lock);
}
} int main(void)
{
pthread_t tProducer, tConsumer;
pthread_create(&tProducer, NULL, threadProducer, NULL);
pthread_create(&tConsumer, NULL, threadConsumer, NULL); pthread_join(tProducer, NULL);
pthread_join(tConsumer, NULL); exit();
}

bug




 
四:总结  
  从上面可以总结出下面的条件变量的生产者消费者代码模型:

//下面是生产者

pthread_mutex_lock(&lock);    //加锁访问临界区
/*在这里生产数据*/
pthread_mutex_unlock(&lock); //解锁 pthread_cond_signal(&ready); //通知消费者 //下面是消费者 pthread_mutex_lock(&lock); //加锁访问临界区
while(没有待消费数据)
pthread_cond_wait(&ready, &lock); //睡在这里,等待被唤醒
/*被叫醒了,在这里消费数据*/
pthread_mutex_unlock(&lock); //解锁

Linux 线程 条件变量的更多相关文章

  1. python线程条件变量Condition(31)

    对于线程与线程之间的交互我们在前面的文章已经介绍了 python 互斥锁Lock / python事件Event , 今天继续介绍一种线程交互方式 – 线程条件变量Condition. 一.线程条件变 ...

  2. Linux Posix线程条件变量

    生产者消费者模型 .多个线程操作全局变量n,需要做成临界区(要加锁--线程锁或者信号量) .调用函数pthread_cond_wait(&g_cond,&g_mutex)让这个线程锁在 ...

  3. Linux 多线程条件变量同步

    条件变量是线程同步的另一种方式,实际上,条件变量是信号量的底层实现,这也就意味着,使用条件变量可以拥有更大的自由度,同时也就需要更加小心的进行同步操作.条件变量使用的条件本身是需要使用互斥量进行保护的 ...

  4. Linux:条件变量

    条件变量:     条件变量本身不是锁!但它也可以造成线程阻塞.通常与互斥锁配合使用.给多线程提供一个会合的场所. 主要应用函数:     pthread_cond_init函数     pthrea ...

  5. 笔记3 linux 多线程 条件变量+互斥锁

    //cond lock #include<stdio.h> #include<unistd.h> #include<pthread.h> struct test { ...

  6. Linux Qt使用POSIX多线程条件变量、互斥锁(量)

    今天团建,但是文章也要写.酒要喝好,文要写美,方为我辈程序员的全才之路.嘎嘎 之前一直在看POSIX的多线程编程,上个周末结合自己的理解,写了一个基于Qt的用条件变量同步线程的例子.故此来和大家一起分 ...

  7. linux 互斥锁和条件变量

    为什么有条件变量? 请参看一个线程等待某种事件发生 注意:本文是linux c版本的条件变量和互斥锁(mutex),不是C++的. mutex : mutual exclusion(相互排斥) 1,互 ...

  8. Linux 线程管理

    解析1 LINUX环境下多线程编程肯定会遇到需要条件变量的情况,此时必然要使用pthread_cond_wait()函数.但这个函数的执行过程比较难于理解. pthread_cond_wait()的工 ...

  9. c++ 条件变量

    .条件变量创建 静态创建:pthread_cond_t cond=PTHREAD_COND_INITIALIZER; 动态创建:pthread_cond _t cond; pthread_cond_i ...

随机推荐

  1. pg viedio

    http://blog.163.com/digoal@126/blog/static/16387704020141229159715/

  2. 谈C#中的Delegate

    引言 Delegate是Dotnet1.0的时候已经存在的特性了,但由于在实际工作中一直没有机会使用Delegate这个特性,所以一直没有对它作整理.这两天,我再度翻阅了一些关于Delegate的资料 ...

  3. QString,QByteArray和QBitArray之间的转换

    1:QBitArray2QString :也可以转化为整型, 测试程序: 测试输出结果是否和移位结果相同: [cpp] view plaincopyprint?   QBitArray x; int  ...

  4. QT 操作数据库

    整理一下 QT 操作数据库的一些要点,以备以后的查询学习(主要是操作 mysql ). 首先,要查询相关的驱动是否已经装好了,可以用以下的程序进行验证: #include <QtCore/QCo ...

  5. 基于Docker服务的java Web服务搭建

    导读 最近想我们的应用需要更新维护,Android.IOS.还有服务器端都要更新,都在忙于写代码没有写文章了.我们的服务器是用java ssh架构的,到时也打算切换成Spring MVC+oauth2 ...

  6. java使用jsp servlet来防止csrf 攻击的实现方法

    背景: 1.csrf知识 CSRF(Cross-site request forgery跨站请求伪造,也被称为“one click attack”或者session riding,通常缩写为CSRF或 ...

  7. DM 之 全解析

    一.设计模式的分类 二十三大设计模式,分为三大类: 1. 创建型模式,共五种:工厂方法模式.抽象工厂模式.单例模式.建造者模式.原型模式. 2. 结构型模式,共七种:适配器模式.装饰器模式.代理模式. ...

  8. 重构11-Switch to Strategy(Switch到策略模式)

    重构没有固定的形式,多年来我使用过不同的版本,并且我敢打赌不同的人也会有不同的版本. 该重构适用于这样的场景:switch语句块很大,并且会随时引入新的判断条件.这时,最好使用策略模式将每个条件封装到 ...

  9. 使用hibernate配置多数据源链接MySQL和Oracle数据库

    最近做项目要将读取到的数据同时插入到MySQL数据库和Oracle数据库当中,以前都是使用一个数据库,没有用过多数据源的情况,现在把这个问题搞定了,写下来希望对大家有点帮助,可能我所使用的方法不是最好 ...

  10. MySQL双主配置

    MySQL双主配置 准备环境:服务器操作系统为RHEL6.4 x86_64,为最小化安装.主机A和主机B均关闭防火墙和SELINUX ,IP地址分别为192.168.131.129和192.168.1 ...