hdu 1828 Picture(线段树 || 普通hash标记)
http://acm.hdu.edu.cn/showproblem.php?pid=1828
Picture
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2135 Accepted Submission(s): 1134
Write a program to calculate the perimeter. An example with 7 rectangles is shown in Figure 1.
The corresponding boundary is the whole set of line segments drawn in Figure 2.
The vertices of all rectangles have integer coordinates. 0 <= number of rectangles < 5000 All coordinates are in the range [-10000,10000] and any existing rectangle has a positive area.
Please process to the end of file.
{
int s,t; //存始末位置
int x;
int flag; //标记是否是起始边 1 -1
}linex[N<<1],liney[N<<1]; //分别安x与y构造线段

#include <iostream>
#include <string.h>
#include <stdio.h>
#include <algorithm>
#define N 5010
using namespace std; struct Line
{
int s,t; //存始末位置
int x;
int flag; //标记是否是起始边 1 -1
}linex[N<<],liney[N<<]; //分别安x与y构造线段 int visit[N<<]; //判断是否访问过 bool cmp(Line a,Line b) //sort排序用
{
return a.x<b.x;
} int cal_x(int n) //统计按x排序的平行于y的线段长
{
int i,j,cnt=;
for(i=;i<=n;i++)
{
if(linex[i].flag == ) //如果是起始边
{
for(j=linex[i].s;j<linex[i].t;j++)
{
if(visit[j]==) cnt++; //起始边,没访问过cnt++
visit[j]++; //标记+1
}
}
else //如果是结束边
{
for(j=linex[i].s;j<linex[i].t;j++)
{
if(visit[j]==) cnt++; //结束边,访问过cnt++
visit[j]--; //标记-1,等待下一个起始边的进入
}
}
}
return cnt;
} int cal_y(int n) //同上,统计按y排序的平行于x的线段长
{
int i,j,cnt=;
for(i=;i<=n;i++)
{
if(liney[i].flag == )
{
for(j=liney[i].s;j<liney[i].t;j++)
{
if(visit[j]==) cnt++;
visit[j]++;
}
}
else
{
for(j=liney[i].s;j<liney[i].t;j++)
{
if(visit[j]==) cnt++;
visit[j]--;
}
}
}
return cnt;
} int main()
{
int n;
while(~scanf("%d",&n))
{
int i,cnt=;
for(i=;i<n;i++)
{
int x1,y1,x2,y2;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
x1+=N<<;
x2+=N<<;
y1+=N<<;
y2+=N<<; //平移N<<1,排除负数情况 cnt++;
linex[cnt].x = x1;
linex[cnt].s = y1;
linex[cnt].t = y2;
linex[cnt].flag = ; liney[cnt].x = y1;
liney[cnt].s = x1;
liney[cnt].t = x2;
liney[cnt].flag = ; cnt++;
linex[cnt].x = x2;
linex[cnt].s = y1;
linex[cnt].t = y2;
linex[cnt].flag = -; liney[cnt].x = y2;
liney[cnt].s = x1;
liney[cnt].t = x2;
liney[cnt].flag = -;
} sort(linex+,linex++cnt,cmp); //线段按x进行排序
sort(liney+,liney++cnt,cmp); //线段按y进行排序 int ans = ;
memset(visit,,sizeof(visit));
ans += cal_x(cnt); //统计x
memset(visit,,sizeof(visit));
ans += cal_y(cnt); //统计y printf("%d\n",ans);
}
return ;
}
【题解2】:线段树
线段树代码是参照别人的
【code】:
#include<iostream>
#include<string>
#include<stdio.h>
#include<algorithm>
#include<cmath>
using namespace std; struct node
{
int l;
int r;
int len; //该区间可与下一个将要插入的线段组成并面积的长度
int cover; //该区间覆盖了几根线段
int num; //记录该区间由几个子区间组成了可与下一个将要插入的线段组成并面积,即可并子区间的数目
int r_cover; //记录该区间右节点是否被可并区间覆盖
int l_cover; //。。。。。坐。。。。。。。。。
}; node tree[];
int n;
int yy[],len; struct Line
{
int l;
int r;
int x;
int cover;
}; Line line[]; int cmp(Line a,Line b)
{
return a.x<b.x;
} int find(int x)
{
int l=,r=len,mid;
while(l<=r)
{
mid=(l+r)/;
if(yy[mid]==x)
return mid;
if(yy[mid]<x)
l=mid+;
else
r=mid-;
}
return l;
} void build(int i,int l,int r)
{
tree[i].l=l;
tree[i].r=r;
tree[i].cover=tree[i].l_cover=tree[i].r_cover=tree[i].len=tree[i].num=;
if(l+==r)
return;
int mid=(l+r)/;
build(*i,l,mid);
build(*i+,mid,r);
} void fun(int i)
{
if(tree[i].cover) //整个被覆盖
{
tree[i].len=yy[tree[i].r]-yy[tree[i].l]; //可用长度为整个区间
tree[i].l_cover=tree[i].r_cover=; //左右节点都被覆盖了
tree[i].num=; //由一个区间组成,即该区间
}
else if(tree[i].l+==tree[i].r) //叶子区间
{
tree[i].len=;
tree[i].l_cover=tree[i].r_cover=;
tree[i].num=;
}
else
{
tree[i].len=tree[*i].len+tree[*i+].len; //dp
tree[i].l_cover=tree[*i].l_cover; //左节点是否覆盖,取决于左子区间的左节点是否被覆盖
tree[i].r_cover=tree[*i+].r_cover; //同理
tree[i].num=tree[*i].num+tree[*i+].num-tree[*i].r_cover*tree[*i+].l_cover; //该线段可用长度的区间组成数等于左右子区间的组成数
} //但是,当左右子区间是连续的时候,结果要减一
} void updata(int i,int l,int r,int w)
{
if(tree[i].l>r || tree[i].r<l)
return;
if(tree[i].l>=l && tree[i].r<=r)
{
tree[i].cover+=w;
fun(i);
return;
}
updata(*i,l,r,w);
updata(*i+,l,r,w);
fun(i);
} int main()
{
int i,x1,x2,y1,y2,m,a,b;
//freopen("in.txt","r",stdin);
while(scanf("%d",&n)!=EOF)
{
m=;
for(i=;i<n;i++)
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
yy[m]=y1;
line[m].cover=;
line[m].x=x1;
line[m].l=y1;
line[m++].r=y2; yy[m]=y2;
line[m].cover=-;
line[m].x=x2;
line[m].l=y1;
line[m++].r=y2;
}
sort(yy,yy+m);
sort(line,line+m,cmp);
len=;
for(i=;i<m;i++) //?
{
if(yy[i-]!=yy[i])
yy[len++]=yy[i];
}
len--;
build(,,len);
int ans=,pre=;
for(i=;i<m;i++)
{
a=find(line[i].l);
b=find(line[i].r);
updata(,a,b,line[i].cover);
ans+=abs((tree[].len-pre)); //加上y坐标上的周长
if(i==m-)
break;
pre=tree[].len;
ans+=tree[].num*(line[i+].x-line[i].x)*;//加上x坐标上的周长,因为一个y边连着两个x边,所以乘二
}
printf("%d\n",ans);
}
return ;
}
hdu 1828 Picture(线段树 || 普通hash标记)的更多相关文章
- POJ 1177/HDU 1828 picture 线段树+离散化+扫描线 轮廓周长计算
求n个图矩形放下来,有的重合有些重合一部分有些没重合,求最后总的不规则图型的轮廓长度. 我的做法是对x进行一遍扫描线,再对y做一遍同样的扫描线,相加即可.因为最后的轮廓必定是由不重合的线段长度组成的, ...
- HDU 1828 Picture (线段树+扫描线)(周长并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1828 给你n个矩形,让你求出总的周长. 类似面积并,面积并是扫描一次,周长并是扫描了两次,x轴一次,y ...
- hdu 1828 Picture(线段树轮廓线)
Picture Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
- HDU 1828 Picture (线段树:扫描线周长)
依然是扫描线,只不过是求所有矩形覆盖之后形成的图形的周长. 容易发现,扫描线中的某一条横边对答案的贡献. 其实就是 加上/去掉这条边之前的答案 和 加上/去掉这条边之后的答案 之差的绝对值 然后横着竖 ...
- HDU 1828 Picture(长方形的周长和)
HDU 1828 Picture 题目链接 题意:给定n个矩形,输出矩形周长并 思路:利用线段树去维护,分别从4个方向扫一次,每次多一段的时候,就查询该段未被覆盖的区间长度,然后周长就加上这个长度,4 ...
- hdu 4031 attack 线段树区间更新
Attack Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)Total Subm ...
- hdu 4288 离线线段树+间隔求和
Coder Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- cf213E 线段树维护hash
链接 https://codeforces.com/contest/213/problem/E 题目大意 给出两个排列a.b,长度分别为n.m,你需要计算有多少个x,使 得\(a_1 + x; a_2 ...
随机推荐
- switch case 与 if
case 在编程中偶尔使用到switch case语句,对于case语句的处理,出现了两种错误,现总结如下: case后必须是常量.布尔类型.字符(不能是字符串): case后如果是‘||’或者‘&a ...
- 深入理解计算机系统第二版习题解答CSAPP 2.19
在2.17的基础上完成下表: x 十六进制 T2U(x) -8 0x8 -3 0xD -2 0xE -1 0xF 0 0x0 5 0x5
- [转]使用Oracle SQL Developer连接数据库并创建用户
本文转自:http://blog.csdn.net/xw13106209/article/details/6594738 1.使用sys账户创建数据库连接 安装Oracle 11g会自带一个叫做SQL ...
- Access数据库在线压缩的实现方法
如果在 Access 数据库中删除数据或对象,或者在 Access 项目中删除对象,Access 数据库或 Access 项目可能会产生碎片并会降低磁盘空间的使用效率.压缩 Access 数据库或Ac ...
- Android入门开发之销毁activity
使用: 销毁.关闭页面activity 如果打开下个页面的同时销毁了本页面,在下个页面无法返回本页面,每次打开APP应用就会先显示一张APP的介绍图.或者LOGO页面,延时几秒进入应用,进入后无法再返 ...
- Android——列表选择框(Spinner)
通常情况下,如果列表选择框中要显示的列表项是可知的,那么可以将其保存在数组资源文件中,然后通过数组资源来为列表选择框指定列表项.这样就可以在不编写Java代码的情况下实现一个下拉选择框. 1.在布局文 ...
- vi删除多行,替换,复制
VI中的多行删除与复制 法一: 单行删除,:1(待删除行)d 多行删除 ,:1,10d 法二: 光标所在行,dd 光标所在行以下的N行,Ndd 方法1: 光标放到第6行, 输入:2yy 光标放到第9行 ...
- 爬虫遇到取到网页为reload的问题
有的网站防采集,会在页面加上this.window.location.reload(),这时候你就会得到如下代码: <html> <head> <meta ...
- 一 JavaScript应用开发实践指南
渐进增强模型 总述: 结构层(Structure),表现层(presentation)与行为层(behavior). HTML,CSS,JavaScript. 只有HTML 的情况下也可以显示内容,C ...
- 学习C++ Primer 的个人理解(十)
标准库没有给每个容器都定义成员函数来实现 查找,替换等操作.而是定义了一组泛型算法,他们可以用于不同类型的元素或多种容器类型. 迭代器令算法不依赖与容器 算法永远不会执行容器的操作 算法本身不会执行容 ...