【BZOJ】1013: [JSOI2008]球形空间产生器sphere

题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标;

思路:高斯消元即第i个点和第i+1个点处理出一个式子,这样n+1个点正好有n个系数的n元变量,即可求解。

式子:Σ( (a[i][j] - x[j])^2 )  = Σ( a[i+1][j] - x[j])^2 )

=>   Σ( x[j]*[2*(a[i+1][j]-a[i][j])] ) = Σ(a[i+1][j]*a[i+1][j] - a[i][j]*a[i][j]);直接预处理即可;

注意:在Gauss处理出上三角阵的过程中,每次要选出主对角线绝对值最大的行作为参考行,貌似是精度问题。还有就是归零的过程中,要变成参考行再消,为了不出现除0的情况。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<vector>
#include<cmath>
#include<stdlib.h>
#include<time.h>
using namespace std;
typedef long long ll;
#define rep0(i,l,r) for(int i = (l);i < (r);i++)
#define rep1(i,l,r) for(int i = (l);i <= (r);i++)
#define MS0(a) memset(a,0,sizeof(a))
#define MS1(a) memset(a,-1,sizeof(a))
double a[][],A[][];
int n;
void Gauss()
{
int i,j,k;
rep1(i,,n){
int mx = i;
rep1(j,i+,n) if(fabs(A[mx][i]) < fabs(A[j][i])) mx = j;
rep1(j,i,n+) swap(A[mx][j],A[i][j]);
rep1(j,i+,n)if(A[i][i] != ){
double y = A[j][i]/A[i][i];
rep1(k,i,n+) A[j][k] -= y*A[i][k];
}
}
for(int i = n;i >= ;i--){
rep1(j,i+,n) A[i][n+] -= A[i][j] * A[j][n+];
A[i][n+] /= A[i][i]; //化为系数为1;保证有解,则A[i][i] != 0;
}
}
int main()
{
int i,j;
scanf("%d",&n);
rep1(i,,n+)
rep1(j,,n)
scanf("%lf",&a[i][j]);
rep1(i,,n)
rep1(j,,n){
A[i][j] = *(a[i+][j] - a[i][j]);
A[i][n+] += a[i+][j]*a[i+][j] - a[i][j]*a[i][j];
}
Gauss();
printf("%.3f",A[][n+]);
rep1(i,,n) printf(" %.3f",A[i][n+]);
}

【BZOJ】1013: [JSOI2008]球形空间产生器sphere的更多相关文章

  1. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  2. bzoj 1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3584  Solved: 1863[Subm ...

  3. BZOJ 1013 [JSOI2008]球形空间产生器sphere

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3074  Solved: 1614[Subm ...

  4. 【高斯消元】BZOJ 1013: [JSOI2008]球形空间产生器sphere

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁 ...

  5. bzoj 1013: [JSOI2008]球形空间产生器sphere【高斯消元】

    n+1个坐标可以列出n个方程,以二维为例,设圆心为(x,y),给出三个点分别是(a1,b1),(a2,b2),(a3,b3) 因为圆上各点到圆心的距离相同,于是可以列出距离方程 \[ (a1-x)^2 ...

  6. [BZOJ 1013] [JSOI2008]球形空间产生器

    [BZOJ 1013] [JSOI2008]球形空间产生器 题面 给出一个n维球体上的n+1个点,求球心坐标 分析 设球心坐标为\((x_1,x_2,\dots x_n)\),由于一个球体上的所有点到 ...

  7. 【BZOJ 1013】球形空间产生器sphere(高斯消元)

    球形空间产生器sphere HYSBZ - 1013 (高斯消元) 原题地址 题意 给出n维的球上的n个点,问原球体球心. 提示 n维球体上两点距离公式\(dist = \sqrt{ (a1-b1)^ ...

  8. 【BZOJ】1013 [JSOI2008]球形空间产生器sphere(高斯消元)

    题目 传送门:QWQ 分析 高斯消元就是个大暴力.... 代码 #include <bits/stdc++.h> using namespace std; ; ; int n; doubl ...

  9. 1013: [JSOI2008]球形空间产生器sphere

    很直观的一个gauss题: 用的是以前用过的一个模板: #include<cstdio> #include<algorithm> #include<cmath> # ...

随机推荐

  1. PHP端验证代码、后端验证

    /** * 验证url是否存在 * @param string $url url路径 * @return boolean true:存在,false:不存在 */ public function va ...

  2. C#_MVC_Repository_CURD_Controller

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...

  3. iOS简单加载一个网页

    .h文件中 @property(strong ,nonitomic) UIWebView * webView; .m文件中 -(void)viewDidLoad { self.webview = [[ ...

  4. CSS——伪元素与伪类

    伪类与伪元素 伪类:在特殊性中占据0,0,1,0 :link 向未访问的链接添加特殊的样式.也就是说,链接所指的 URI 尚未出现在用户代理的历史中.这种状态与 :visited状态是互斥的. :vi ...

  5. Intent实现页面跳转

    Intent实现页面跳转: 1. startActivity(intent) 2. startActivityForResult(intent,requestCode); onActivityResu ...

  6. nodejs使用express4框架默认app.js配置说明

    var express = require('express'); //引入express模块 var path = require('path'); //引入path模块,该模块包括了一些处理文件路 ...

  7. Gvim使用心得--设置篇[转]

    1.设置自己喜欢的字体? 点“编辑”--“选择字体”, 然后在字体列表中选择一个你喜欢的字体和字号,然后确认. 如果想每次都使用这个这个字体 需要加到启动文件中 比如我的 set guifont=Co ...

  8. php中GD库的一些简单使用

    今天了解了一些GD库的简单使用,现在稍微做一下总结! GD库是什么?,graphic device,图像工具库,gd库是php处理图形的扩展库,gd库提供了一系列用来处理图片的API,使用GD库可以处 ...

  9. linux+asp.net core+nginx+sql server

    Linux Disibutaion:Ubuntu 16.04.1 LTS Web Server:Nginx.Kestrel 安装.net core sudo sh -c 'echo "deb ...

  10. PowerDesigner使用教程 —— 概念数据模型 (转)

    一.概念数据模型概述    概念数据模型也称信息模型,它以实体-联系(Entity-RelationShip,简称E-R)理论为基础,并对这一理论进行了扩充.它从用户的观点出发对信息进行建模,主要用于 ...