http://vjudge.net/problem/viewProblem.action?id=20613

题意:不用说了,中文题。

这个题可以用概率DP来做。

题中要求猫抓到老鼠的时间期望。分析一下这个过程,如果猫在每单位时间里第一步移动没有抓到老鼠,它还可以继续移动一次。对于确定老鼠的位置,注意猫的每次移动都是固定的,而老鼠的移动位置却是不定的。

令dp[i][j]表示猫在i位置老鼠在j位置时,猫抓到老鼠的期望。next[i][j]表示猫从i位置到j位置时走最短路径需要移动到的第一个结点位置。d[i]表示结点i的度。

这样首先看猫的当前位置,如果i==j即猫和老鼠在同一个点,那么猫不用移动了这时候猫已经抓到了老师,dp[i][j]=0。

如果不等,考虑如果猫在这两次移动中抓到了老鼠,如果猫第一步移动到了老鼠当前所在位置,即next[i][j]==j,或者猫第二步移动抓到了老鼠,即next[next[i][j]][j]==j,此时所用时间都是1,dp[i][j]=1。

其他情况,考虑猫在该单位时间内没抓到老鼠,此时的状态转移取决于老鼠的行动。老鼠可以移动到任意一个和j结点相连的点,也可以停留在j点,每种情况发生的概率是1/(d[j]+1),每次转移到的状态即dp[next[next[i][j]][j]][k](k取值j,或与j点直接连边的点),运用全期望公式即可。

这样记忆化搜索可解。

其中计算next[][]的过程可以用bfs预处理。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <algorithm>
#define ll long long
#define MAXN 30005
using namespace std;
int n,m;
vector<];
][];
][];
][];
struct Point
{
    int pos,from;
    Point(,):pos(a),from(b) {}
};
void bfs(int sst)
{
    ]= {};
    queue<Point> que;
    que.push(Point(sst));
    while(!que.empty())
    {
        Point q=que.front();
        que.pop();
        ; i<gl[q.pos].size(); ++i)
        {
            if(vis[gl[q.pos][i]]) continue;
            vis[gl[q.pos][i]]=true;
            int f;
            if(q.pos==sst) f=gl[q.pos][i];
            else f=q.from;
            que.push(Point(gl[q.pos][i],f));
            next[sst][gl[q.pos][i]]=f;
        }
    }
}
double dp(int i,int j)
{
    if(vis[i][j]) return f[i][j];
    vis[i][j]=true;
    int &p=next[i][j];
    ;
    ;
    f[i][j]=;
    ; k<gl[j].size(); ++k)
        f[i][j]+=dp(next[p][j],gl[j][k]);
    f[i][j]+=dp(next[p][j],j);
    f[i][j]/=(gl[j].size()+);
    f[i][j]++;
    return f[i][j];

}
int main()
{
    scanf("%d%d",&n,&m);
    int st,ed;
    scanf("%d%d",&st,&ed);
    ; i<m; ++i)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        gl[x].push_back(y);
        gl[y].push_back(x);
    }
    ; i<=n; ++i)
    {
        sort(gl[i].begin(),gl[i].end());
        bfs(i);
    }
    memset(vis,,sizeof(vis));
    printf("%.3lf\n",dp(st,ed));
    ;
}

HYSBZ 1415 - 聪聪和可可(概率DP)的更多相关文章

  1. BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)

    题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...

  2. 聪聪和可可 HYSBZ - 1415(概率 + spfa + 记忆化dp)

    Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点的编号. 接下来E行,每 ...

  3. BZOJ 1415: [Noi2005]聪聪和可可( 最短路 + 期望dp )

    用最短路暴力搞出s(i, j)表示聪聪在i, 可可在j处时聪聪会走的路线. 然后就可以dp了, dp(i, j) = [ dp(s(s(i,j), j), j) + Σdp(s(s(i,j), j), ...

  4. bzoj1415 [Noi2005]聪聪和可可【概率dp 数学期望】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1415 noip2016 D1T3,多么痛的领悟...看来要恶补一下与期望相关的东西了. 这是 ...

  5. 1415. [NOI2005]聪聪和可可【记忆化搜索DP】

    Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2行包含两个整数C和M,以空格分隔,分别表示初始时聪聪和可可所在的景点 ...

  6. bzoj 1415 [Noi2005]聪聪和可可——其实无环的图上概率

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1415 乍一看和“游走”一样.于是高斯消元.n^2状态,复杂度n^6…… 看看TJ,发现因为聪 ...

  7. BZOJ_1415_[Noi2005]聪聪和可可_概率DP+bfs

    BZOJ_1415_[Noi2005]聪聪和可可_概率DP+bfs Description Input 数据的第1行为两个整数N和E,以空格分隔,分别表示森林中的景点数和连接相邻景点的路的条数. 第2 ...

  8. 概率/期望DP初步——BZOJ1415 聪聪和可可

    期望相关: 数学期望,可以简单理解的加权平均数.设有一系列的值$x_i$,每个值被取到的概率为$p_i$,则期望$E=\sum\limits_{i=1}^n p_i x_i$. 期望具有线性性:$$E ...

  9. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

随机推荐

  1. 求出数组前面k个元素或数组中元素大于一半的元素(快速排序与堆排序的灵活运用)

    写这个的目的在于,说明快速排序的灵活运用.我们来看下关于快速排序中的一部分关键代码: 快速排序代码: int a[101],n;//定义全局变量,这两个变量需要在子函数中使用 void quickso ...

  2. PC上安装多个操作系统

    目 录 第1章 绪论    1 1.1 目标    1 1.2 适宜的读者    1 第2章 制作启动U盘    2 2.1 初级安装    2 2.2 启动分析    3 2.3 高级安装    1 ...

  3. C语言中随机数相关问题

    用C语言产生随机数重要用到rand函数.srand函数.及宏RAND_MAX(32767),它们均在stdlib.h中进行了声明. int rand(void);//生成一个随机数 voidsrand ...

  4. linux笔记:关机重启命令shutdown,系统运行级别init,退出登录logout

    命令名称:shutdown功能:关机或重启用法:shutdown [选项] [时间]选项参数:-c 取消前一个关机命令-h 关机-r 重启时间格式:now 现在时:分 20:30其他:会正常关闭正在启 ...

  5. 日期操作类--Calendar类

    Calendar-API Calendar类 通过Date和DateFormat能够格式化并创建一个日期对象了,但是我们如何才能设置和获取日期数据的特定部分呢,比如说小时,日,或者分钟? 我们又如何在 ...

  6. IE9以上 CSS文件因Mime类型不匹配而被忽略 其他浏览器及IE8以下显示正常

     什么是Mime类型? MIME(Multipurpose Internet Mail Extensions)多用途互联网邮件扩展类型就是设定某种扩展名的文件用一种应用程序来打开的方式类型,当该扩展名 ...

  7. 5.6 WebDriver API实例讲解(16-30)

    16.操作单选框 被测试的网页为Demo1. Java语言版本的API实例代码: public static void operateRadio(){ driver.get("file:// ...

  8. Android 使用dagger2进行依赖注入(基础篇)

    0. 前言 Dagger2是首个使用生成代码实现完整依赖注入的框架,极大减少了使用者的编码负担,本文主要介绍如何使用dagger2进行依赖注入.如果你不还不了解依赖注入,请看这一篇. 1. 简单的依赖 ...

  9. 第二周 SCRUM站立会议

    站立会议是成员间每个人面对面站立着说出自己的进展,不是会议,不是写报告.是为了更好的沟通和协调,本质上是为了工程方面的团队交流. scrum站立会议的要求如下: 1.成员间都是平等的,发言没有经理和程 ...

  10. poj-------------(2752)Seek the Name, Seek the Fame(kmp)

    Seek the Name, Seek the Fame Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11831   Ac ...