[HDOJ2604]Queuing(递推,矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604
递推式是百度的,主要是练习一下如何使用矩阵快速幂优化。
递推式:f(n)=f(n-1)+f(n-3)+f(n-4),其中f(0)=2, f(1)=4, f(2)=6, f(3)=9。
当n>4时候,需要通过这个关系来递推。
构造矩阵这种东西我以前一直认为是很玄学的,但是如果深入研究的话不难发现其实也有规律可循。这是一个齐次递推式,很好构造。
我们希望通过如下矩阵(1)得到矩阵(2)
| f(n) | |f(n+)|
|f(n-)| | f(n) |
|f(n-)| |f(n-)|
|f(n-)| |f(n-)|
() ()
那么实际上,我们是通过一个转换矩阵把f(n),f(n-1),f(n-2)移动了一下位置,并且推出了f(n+1)。再考虑到矩阵乘法的特性,我们就能得到一个递推矩阵:
| |
| |
| |
| |
我把第一行列为递推方程的系数,这样递推矩阵的第一列和目标矩阵的整列相乘即可得到递推的下一个结果。那剩下的怎么办呢?向下看会发现,按照行x列的特性,分别又列到了对应的位置。再根据矩阵乘法的性质就会很容易证明满足递推方程。
代码如下:
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath> using namespace std; const int maxn = ;
typedef struct Matrix {
int m[maxn][maxn];
int r;
int c;
Matrix(){
r = c = ;
memset(m, , sizeof(m));
}
} Matrix; Matrix mul(Matrix m1, Matrix m2, int mod) {
Matrix ans = Matrix();
ans.r = m1.r;
ans.c = m2.c;
for(int i = ; i <= m1.r; i++) {
for(int j = ; j <= m2.r; j++) {
for(int k = ; k <= m2.c; k++) {
if(m2.m[j][k] == ) continue;
ans.m[i][k] = ((ans.m[i][k] + m1.m[i][j] * m2.m[j][k] % mod) % mod) % mod;
}
}
}
return ans;
} Matrix quickmul(Matrix m, int n, int mod) {
Matrix ans = Matrix();
for(int i = ; i <= m.r; i++) {
ans.m[i][i] = ;
}
ans.r = m.r;
ans.c = m.c;
while(n) {
if(n & ) {
ans = mul(m, ans, mod);
}
m = mul(m, m, mod);
n >>= ;
}
return ans;
} int n, m; int main() {
// freopen("in", "r", stdin);
while(~scanf("%d %d", &n, &m)) {
Matrix p;
p.r = , p.c = ;
p.m[][] = ;
p.m[][] = ;
p.m[][] = ;
p.m[][] = ;
if(n <= ) {
printf("%d\n", p.m[-n+][] % m);
continue;
}
Matrix s;
s.r = s.c = ;
s.m[][] = ; s.m[][] = , s.m[][] = , s.m[][] = ;
s.m[][] = ; s.m[][] = , s.m[][] = , s.m[][] = ;
s.m[][] = ; s.m[][] = , s.m[][] = , s.m[][] = ;
s.m[][] = ; s.m[][] = , s.m[][] = , s.m[][] = ;
s = quickmul(s, n-, m);
int ans = ;
for(int i = ; i <= p.r; i++) {
ans = (ans + (p.m[i][] * s.m[][i]) % m) % m;
}
printf("%d\n", ans % m);
}
return ;
}
[HDOJ2604]Queuing(递推,矩阵快速幂)的更多相关文章
- [hdu 2604] Queuing 递推 矩阵快速幂
Problem Description Queues and Priority Queues are data structures which are known to most computer ...
- HDU Queuing(递推+矩阵快速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- hdu 2604 递推 矩阵快速幂
HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- 【递推+矩阵快速幂】【HDU2604】【Queuing】
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- HDU 2842 (递推+矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...
- Recursive sequence HDU - 5950 (递推 矩阵快速幂优化)
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但 ...
- HDU6030 Happy Necklace(递推+矩阵快速幂)
传送门:点我 Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of ...
- 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)
题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...
- LightOJ 1244 - Tiles 猜递推+矩阵快速幂
http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N < ...
随机推荐
- 【BZOJ】【1003】【ZJOI2006】物流运输trans
最短路/DP 这题数据规模并不大!!这是重点……… 所以直接暴力DP就好了:f[i]表示前 i 天的最小花费,则有$f[i]=min\{f[j]+cost[j+1][i]+k\} (0\leq j \ ...
- BZOJ 3714: [PA2014]Kuglarz
Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子i,i+ ...
- 最全的dedeCMS标签调用技巧和大全
1. 页面php方法获取字段 $refObj->Fields['id']; 2. 在页面上使用PHP连接数据库查询 {dede:php} $db = new DedeSql(false); $ ...
- POJ 1548 Robots (Dilworth)
Robots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3621 Accepted: 1643 Description Yo ...
- 驱动笔记 - IO端口和IO内存
访问IO端口 (#include <asm/io.h>) 设备资源struct resource{ resource_size_t start; //资源起始物理地址 resource_s ...
- 几种基于HTTP协议的RPC性能比较
有了整体的了解后,可以发现Hessian的这个远程过程调用,完全使用动态代理来实现的,其实从客户端代码不难看出,HessianProxyFactory的create方法就是创建接口Basic的代理类, ...
- 斌哥的 Docker 进阶指南—监控方案的实现
过去的一年中,关于 Docker 的话题从未断过,而如今,从尝试 Docker 到最终决定使用 Docker 的转化率依然在逐步升高,关于 Docker 的讨论更是有增无减.另一方面,大家的注意力也渐 ...
- Javascript Date类常用方法详解
getDate :得到的是今天是 几号(1-28.29.30.31). getDay : 得到的是今天是 星期几(1-7). getFullYear : 得到的是今天是 几几年(4位). getH ...
- poj 3903 Stock Exchange(最长上升子序列,模版题)
题目 #include<stdio.h> //最长上升子序列 nlogn //入口参数:数组名+数组长度,类型不限,结构体类型可以通过重载运算符实现 //数组下标从1号开始. int bs ...
- Add and Search Word - Data structure design
https://leetcode.com/problems/add-and-search-word-data-structure-design/ Design a data structure tha ...