文本比较算法:Needleman/Wunsch算法
本文介绍基于最长公共子序列的文本比较算法——Needleman/Wunsch算法。还是以实例说明:字符串A=kitten,字符串B=sitting那他们的最长公共子序列为ittn(注:最长公共子序列不需要连续出现,但一定是出现的顺序一致),最长公共子序列长度为4。
和LD算法类似,Needleman/Wunsch算法用的都是动态规划的思想,两者十分相似。
举例说明:A=GGATCGA,B=GAATTCAGTTA,计算LCS(A,B)。
第一步:初始化动态转移矩阵
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | |||||||||||
| G | 0 | |||||||||||
| A | 0 | |||||||||||
| T | 0 | |||||||||||
| C | 0 | |||||||||||
| G | 0 | |||||||||||
| A | 0 |
第二步:计算矩阵的第一行
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | |||||||||||
| A | 0 | |||||||||||
| T | 0 | |||||||||||
| C | 0 | |||||||||||
| G | 0 | |||||||||||
| A | 0 |
第三步:计算矩阵的其余各行
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
则,LCS(A,B)=LCS(7,11)=6
状态转移方程是:若A(i)=B(j),LCS(i,j)=LCS(i-1,j-1)+1;否则LCS(i,j)=max(LCS(i-1,j-1),LCS(i,j-1),LCS(i-1,j))=max(LCS(i,j-1),LCS(i-1,j))。程序实现:
/*
*侯凯,2014-9-15
*功能:最长子序列
*/
#include<iostream>
using namespace std; int CalTheDistance(string A,string B)
{
int **ptr = new int*[ A.size()+ ];
for(int i = ; i < A.size() + ;i++)
{
ptr[i] = new int[B.size() + ];
} for(int i=;i<A.size()+;i++)
{
ptr[i][] = ;
}
for(int i=;i<B.size()+;i++)
{
ptr[][i] = ;
}
for(int i=;i<A.size();i++)
{
for(int j=;j<B.size();j++)
{
if(A[i]==B[j])
ptr[i+][j+]=ptr[i][j]+;
else
ptr[i+][j+]=max(ptr[i+][j],ptr[i][j+]);
}
}
int result = ptr[A.size()][B.size()];
for(int i = ; i < A.size() + ;i++)
{
delete [] ptr[i];
ptr[i] = NULL;
}
delete[] ptr;
ptr = NULL;
return result;
} int main()
{
string str1 = "GGATCGA";
string str2 = "GAATTCAGTTA";
//最长子序列为6
int distance = CalTheDistance(str1,str2);
cout<<distance<<endl;
system("Pause");
}
以上面为例A=GGATCGA,B=GAATTCAGTTA,LCS(A,B)=6
他们的匹配为:
A:GGA_TC_G__A
B:GAATTCAGTTA
如上面所示,蓝色表示完全匹配,黑色表示编辑操作,_表示插入字符或者是删除字符操作。如上面所示,蓝色字符有6个,表示最长公共子串长度为6。
利用上面的Needleman/Wunsch算法矩阵,通过回溯,能找到匹配字串
第一步:定位在矩阵的右下角
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
第二步:回溯单元格,至矩阵的左上角
若ai=bj,则回溯到左上角单元格
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
若ai≠bj,回溯到左上角、上边、左边中值最大的单元格,若有相同最大值的单元格,优先级按照左上角、上边、左边的顺序
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
若当前单元格是在矩阵的第一行,则回溯至左边的单元格;若当前单元格是在矩阵的第一列,则回溯至上边的单元格
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
依照上面的回溯法则,回溯到矩阵的左上角
第三步:根据回溯路径,写出匹配字串
若回溯到左上角单元格,将ai添加到匹配字串A,将bj添加到匹配字串B
若回溯到上边单元格,将ai添加到匹配字串A,将_添加到匹配字串B
若回溯到左边单元格,将_添加到匹配字串A,将bj添加到匹配字串B
搜索晚整个匹配路径,匹配字串也就完成了
可以看出,LD算法和Needleman/Wunsch算法的回溯路径是一样的。这样找到的匹配字串也是一样的。
文本比较算法:Needleman/Wunsch算法的更多相关文章
- 文本比较算法Ⅱ——Needleman/Wunsch算法
在"文本比较算法Ⅰ--LD算法"中介绍了基于编辑距离的文本比较算法--LD算法. 本文介绍基于最长公共子串的文本比较算法--Needleman/Wunsch算法. 还是以实例说明: ...
- 文本比较算法Ⅱ——Needleman/Wunsch算法的C++实现【求最长公共子串(不需要连续)】
算法见:http://www.cnblogs.com/grenet/archive/2010/06/03/1750454.html 求最长公共子串(不需要连续) #include <stdio. ...
- 利用Needleman–Wunsch算法进行DNA序列全局比对
生物信息学原理作业第二弹:利用Needleman–Wunsch算法进行DNA序列全局比对. 具体原理:https://en.wikipedia.org/wiki/Needleman%E2%80%93W ...
- 字符串与模式匹配算法(六):Needleman–Wunsch算法
一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于 ...
- 文本比较算法三——SUNDAY 算法
SUNDAY 算法描述: 字符串查找算法中,最著名的两个是KMP算法(Knuth-Morris-Pratt)和BM算法(Boyer-Moore).两个算法在最坏情况下均具有线性的查找时间.但是在实用上 ...
- 算法:KMP算法
算法:KMP排序 算法分析 KMP算法是一种快速的模式匹配算法.KMP是三位大师:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,所以取首字母组成KMP. 少部分图片来自孤~影 ...
- BF算法与KMP算法
BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的 ...
- Levenshtein Distance算法(编辑距离算法)
编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...
- javascript数据结构与算法--高级排序算法
javascript数据结构与算法--高级排序算法 高级排序算法是处理大型数据集的最高效排序算法,它是处理的数据集可以达到上百万个元素,而不仅仅是几百个或者几千个.现在我们来学习下2种高级排序算法-- ...
随机推荐
- C语言 · 高精度加法
问题描述 输入两个整数a和b,输出这两个整数的和.a和b都不超过100位. 算法描述 由于a和b都比较大,所以不能直接使用语言中的标准数据类型来存储.对于这种问题,一般使用数组来处理. 定义一个数组A ...
- MVVM模式解析和在WPF中的实现(五)View和ViewModel的通信
MVVM模式解析和在WPF中的实现(五) View和ViewModel的通信 系列目录: MVVM模式解析和在WPF中的实现(一)MVVM模式简介 MVVM模式解析和在WPF中的实现(二)数据绑定 M ...
- iOS controller解耦探究实现——第一次写博客
大学时曾经做过android的开发,目前的工作是iOS的开发.之前自己记录东西都是通过自己比较喜欢的笔记类的应用记录下了.直到前段时一个哥们拉着我注册了一个博客.现在终于想明白了,博客这个东西受众会稍 ...
- HIVE教程
完整PDF下载:<HIVE简明教程> 前言 Hive是对于数据仓库进行管理和分析的工具.但是不要被“数据仓库”这个词所吓倒,数据仓库是很复杂的东西,但是如果你会SQL,就会发现Hive是那 ...
- bzoj3207--Hash+主席树
题目大意: 给定一个n个数的序列和m个询问(n,m<=100000)和k,每个询问包含k+2个数字:l,r,b[1],b[2]...b[k],要求输出b[1]~b[k]在[l,r]中是否出现. ...
- 安卓GreenDao框架一些进阶用法整理
大致分为以下几个方面: 一些查询指令整理 使用SQL语句进行特殊查询 检测表字段是否存在 数据库升级 数据库表字段赋初始值 一.查询指令整理 1.链式执行的指令 return mDaoSession. ...
- Android中的多线程断点下载
首先来看一下多线程下载的原理.多线程下载就是将同一个网络上的原始文件根据线程个数分成均等份,然后每个单独的线程下载对应的一部分,然后再将下载好的文件按照原始文件的顺序"拼接"起来就 ...
- 海鑫智圣:物联网漫谈之MQTT协议
什么是MQTT协议 MQTT(消息队列遥测传输协议)是IBM在1999年专门针对物联网等应用场景来制订的轻量级双向消息传输协议,它主要是为了解决物联网上使用到的设备的互相通信的问题,以及这些设备与后端 ...
- liunx 磁盘管理命令记录
Linux磁盘管理好坏管理直接关系到整个系统的性能问题. Linux磁盘管理常用三个命令为df.du和fdisk. df:列出文件系统的整体磁盘使用量 du:检查磁盘空间使用量 fdisk:用于磁盘分 ...
- Create a bridge using a tagged vlan (8021.q) interface
SOLUTION VERIFIED April 27 2013 KB26727 Environment Red Hat Enterprise Linux 5 Red Hat Enterprise Li ...