图像增强是图像处理的第一步。这里集成了一些实际使用过程中有用的函数。

  //读取灰度或彩色图片到灰度
    Mat imread2gray(string path){
        Mat src = imread(path);
        Mat srcClone = src.clone();
        if (CV_8UC3 == srcClone.type() )
            cvtColor(srcClone,srcClone,CV_BGR2GRAY);
        return srcClone;

}

   算法核心在于判断读入图片的通道数,如果是灰度图片则保持;如果是彩色图片则转换为灰度图片。通过这样一个函数,就能够直接获得灰度图片。
 
    //带有上下限的threshold
    Mat threshold2(Mat src,int minvalue,int maxvalue){
        Mat thresh1;
        Mat thresh2;
        Mat dst;
        threshold(src,thresh1,minvalue,255, THRESH_BINARY);
        threshold(src,thresh2,maxvalue,255,THRESH_BINARY_INV);
        dst = thresh1 & thresh2;
        return dst;

}

    Opencv提供的threshold算法很强大,但是只能够取单门限。这里修改成可以取双门限的形式。
 
    //自适应门限的canny算法 
    //canny2
    Mat canny2(Mat src){
        Mat imagetmp = src.clone();
        double low_thresh = 0.0;  
        double high_thresh = 0.0;  
        AdaptiveFindThreshold(imagetmp,&low_thresh,&high_thresh);
        Canny(imagetmp,imagetmp,low_thresh,high_thresh);   
        return imagetmp;}
    void AdaptiveFindThreshold( Mat src,double *low,double *high,int aperture_size){
        const int cn = src.channels();
        Mat dx(src.rows,src.cols,CV_16SC(cn));
        Mat dy(src.rows,src.cols,CV_16SC(cn));
        Sobel(src,dx,CV_16S,1,0,aperture_size,1,0,BORDER_REPLICATE);
        Sobel(src,dy,CV_16S,0,1,aperture_size,1,0,BORDER_REPLICATE);
        CvMat _dx = dx;
        CvMat _dy = dy;
        _AdaptiveFindThreshold(&_dx, &_dy, low, high); }  
    void _AdaptiveFindThreshold(CvMat *dx, CvMat *dy, double *low, double *high){                                                                                
        CvSize size;                                                             
        IplImage *imge=0;                                                        
        int i,j;                                                                 
        CvHistogram *hist;                                                       
        int hist_size = 255;                                                     
        float range_0[]={0,256};                                                 
        float* ranges[] = { range_0 };                                           
        double PercentOfPixelsNotEdges = 0.7;                                    
        size = cvGetSize(dx);                                                    
        imge = cvCreateImage(size, IPL_DEPTH_32F, 1);                            
        // 计算边缘的强度, 并存于图像中                                          
        float maxv = 0;                                                          
        for(i = 0; i < size.height; i++ ){                                                                        
            const short* _dx = (short*)(dx->data.ptr + dx->step*i);          
            const short* _dy = (short*)(dy->data.ptr + dy->step*i);          
            float* _image = (float *)(imge->imageData + imge->widthStep*i);  
            for(j = 0; j < size.width; j++){                                                                
                _image[j] = (float)(abs(_dx[j]) + abs(_dy[j]));          
                maxv = maxv < _image[j] ? _image[j]: maxv;}}                                                                        
        if(maxv == 0){                                                           
            *high = 0;                                                       
            *low = 0;                                                        
            cvReleaseImage( &imge );                                         
            return;}                                                                        
        // 计算直方图                                                            
        range_0[1] = maxv;                                                       
        hist_size = (int)(hist_size > maxv ? maxv:hist_size);                    
        hist = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1);            
        cvCalcHist( &imge, hist, 0, NULL );                                      
        int total = (int)(size.height * size.width * PercentOfPixelsNotEdges);   
        float sum=0;                                                             
        int icount = hist->mat.dim[0].size;                                     
        float *h = (float*)cvPtr1D( hist->bins, 0 );                             
        for(i = 0; i < icount; i++){                                                                        
            sum += h[i];                                                     
            if( sum > total )                                                
                break; }                                                                        
        // 计算高低门限                                                          
        *high = (i+1) * maxv / hist_size ;                                       
        *low = *high * 0.4;                                                      
        cvReleaseImage( &imge );                                                 
        cvReleaseHist(&hist); }     

// end of canny2
         我们在使用Opencv的canny算法的时候,一般是按照经验填写上下门限值。为了解决这个问题,通过自适应算法(算法来源我想不起来了),自动计算出上下门限。能够取得不错效果。

 
 

【20160924】GOCVHelper 图像增强部分(1)的更多相关文章

  1. 【20160924】GOCVHelper 图像增强部分(4)

    //使得rect区域半透明     Mat translucence(Mat src,Rect rect,int idepth){         Mat dst = src.clone();     ...

  2. 【20160924】GOCVHelper 图像增强部分(5)

    // Multiply 正片叠底 void Multiply(Mat& src1, Mat& src2, Mat& dst) {     for(int index_row=0 ...

  3. 【20160924】GOCVHelper 图像增强部分(3)

    //顶帽去光差,radius为模板半径     Mat moveLightDiff(Mat src,int radius){         Mat dst;         Mat srcclone ...

  4. 【20160924】GOCVHelper 图像增强部分(2)

       //填充孔洞     //fillholes     Mat fillHoles(Mat src){         Mat dst = getInnerHoles(src);          ...

  5. 基于Opencv和Mfc的图像处理增强库GOCVHelper(索引)

    GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...

  6. 【20160924】GOCVHelper综述

    GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...

  7. 【20160924】GOCVHelper MFC增强算法(4)

    //string替换     void string_replace(string & strBig, const string & strsrc, const string & ...

  8. 【20160924】GOCVHelper 图像处理部分(3)

    //根据轮廓的圆的特性进行选择     vector<VP> selectShapeCircularity(Mat src,Mat& draw,vector<VP> c ...

  9. 【20160924】GOCVHelper 图像处理部分(2)

    //根据轮廓的面积大小进行选择     vector<VP>  selectShapeArea(Mat src,Mat& draw,vector<VP> contour ...

随机推荐

  1. 通用窗口类 Inventory Pro 2.1.2 Demo1(中)

    本篇想总结的是Inventory Pro中通用窗口的具体实现,但还是要强调下该插件的重点还是装备系统而不是通用窗口系统,所以这里提到的通用窗口类其实是通用装备窗口类(其实该插件中也有非装备窗口比如No ...

  2. tableview的cell点击和取消

    #pragma mark - 选择cell: - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPa ...

  3. PostgreSQL Replication之第十三章 使用PL/Proxy扩展(3)

    13.3 聪明地扩展与处理集群 建立集群不是您面临的唯一任务.如果所有的事情都做完了并且系统已经运行了,您可能需要到处调整配置. 13.3.1 添加和移动分区 一旦一个集群启动并运行,您可能会发现您的 ...

  4. csuoj 1115: 最短的名字

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1115 1115: 最短的名字 Time Limit: 5 Sec  Memory Limit: 6 ...

  5. [原创]java WEB学习笔记72:Struts2 学习之路-- 文件的上传下载,及上传下载相关问题

    本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...

  6. Linux 配置双机SSH信任

    一.实现原理 使用一种被称为"公私钥"认证的方式来进行ssh登录."公私钥"认证方式简单的解释是: 首先在客户端上创建一对公私钥(公钥文件:~/.ssh/id_ ...

  7. paper 77:[转载]ENDNOTE使用方法,常用!

    一.简介  EndNote是一款用于海量文献管理和批量参考文献管理的工具软件,自问世起就成为科研界的必备武器.在前EndNote时代,文献复习阶段从各大数据库中搜集到的文献往往千头万绪.或重复或遗漏, ...

  8. linux系统-代码行数计算

    find macc-cometd -type f -name "*.java" -print0 | xargs -0 wc -l

  9. 夺命雷公狗---DEDECMS----24dedecms让网站头部分离

    我们这里来做一个让网站头部分离的工作,我们先看下index.htm的模版, 这里很明显就是用了一个div包围着而已,那么我们在模版目录下创建一个head.htm,如下所示: 然后我们再将刚才div里面 ...

  10. 组合逻辑的Glitch与时序逻辑的亚稳态

    竞争(Race):一个门的输入有两个及以上的变量发生变化时,由于各个输入的组合路径的延时不同,使得在门级输入的状态改变非同时. 冒险或险象(Hazard):竞争的结果,如毛刺Glitch. 相邻信号间 ...