Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2079    Accepted Submission(s): 748

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

 
Input
The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

 
 
 
2 3 107 ==>10 ==>C(5,2)
 
{ 0,0
   0,1  1,0
   1,1, 2,0  0,2
   3,0  0,3   1,2  2,1
}
 
 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<vector>
using namespace std;
typedef __int64 LL; LL dp[]; void init(LL p){
int i;
dp[]=;
for(i=;i<=p;i++)
dp[i]=(dp[i-]*i)%p;
}
LL pow_mod(LL a,LL n,LL p)
{
LL ans=;
while(n)
{
if(n&) ans=(ans*a)%p;
n=n>>;
a=(a*a)%p;
}
return ans;
}
LL C(LL a,LL b,LL p)
{
if(a<b) return ;
if(b>a-b) b=a-b;
LL sum1=dp[a];
LL sum2=(dp[b]*dp[a-b])%p;
sum1=(sum1*pow_mod(sum2,p-,p));
return sum1;
}
LL Lucas(LL n,LL m,LL p)
{
LL ans=;
while(n&&m&&ans)
{
ans=(ans*C(n%p,m%p,p))%p;
n=n/p;
m=m/p;
}
return ans;
}
int main()
{
int T;
LL n,m,p;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d",&n,&m,&p);
init(p);
if(n>m)swap(n,m);
LL ans= Lucas(n+m,m,p);
printf("%I64d\n",ans);
}
return ;
}

hdu 3037 Saving Beans的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  5. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  6. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  7. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  8. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  9. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

随机推荐

  1. vi/vim 键盘图 & 替换

    在VIM中进行文本替换:    1.  替换当前行中的内容:    :s/from/to/    (s即substitude)        :s/from/to/     :  将当前行中的第一个f ...

  2. C++新手之详细介绍MFC

     MFC (Microsoft Foundation Class Library)中的各种类结合起来构成了一个应用程序框架,它的目的就是让程序员在此基础上来建立Windows下的应用程序,这是一种相对 ...

  3. yii添加行的增删改查

    效果图: 控制器: <?phpnamespace backend\controllers;use Yii;use yii\web\Controller;use backend\models\Zh ...

  4. paper 6:支持向量机系列三:Kernel —— 介绍核方法,并由此将支持向量机推广到非线性的情况。

    前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的.不过,由于是线性方法,所以对非线性的数据就没有办法处理了.例如图中的两类数据,分别分布为两个圆圈的形状,不论 ...

  5. smarty简单介绍

    smarty简单介绍 示意图如下 简单介绍smarty.class.php类的大体内容,如下: <?php class Smarty //此类就是libs中的Smarty.class.php类 ...

  6. zw版【转发·台湾nvp系列Delphi例程】HALCON TileChannels

    zw版[转发·台湾nvp系列Delphi例程]HALCON TileChannels unit Unit1;interfaceuses Windows, Messages, SysUtils, Var ...

  7. 对OpenGL的GLFrame框架进行的扩展截至2014年11月29日

    框架源自<OpenGL游戏编程>,增加了此框架的部分功能.其中有些小错误,尤其是MD2模型的那章,给出的框架只支持载入一个BOSS,当再载入一个BOSS时,就会发现两个模型的帧速会乱套. ...

  8. linux设备驱动归纳总结(十三):1.触摸屏与ADC时钟【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-119723.html linux设备驱动归纳总结(十三):1.触摸屏与ADC时钟 xxxxxxxxxx ...

  9. 160927、用jquery 重置表单的方法

    清空 我们项目小小部分的搜索条件: 客户要做的是,只要一键 "清空搜索条件" 即可清空维护地点.订单ID等条件. js函数 //重置表单 function resetform(){ ...

  10. scala简单的文件操作

    1.scala写入文件操作 package com.test import java.io.File import java.io.PrintWriter /** * scala文件写入 */ obj ...