Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2079    Accepted Submission(s): 748

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

 
Input
The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

 
 
 
2 3 107 ==>10 ==>C(5,2)
 
{ 0,0
   0,1  1,0
   1,1, 2,0  0,2
   3,0  0,3   1,2  2,1
}
 
 #include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<vector>
using namespace std;
typedef __int64 LL; LL dp[]; void init(LL p){
int i;
dp[]=;
for(i=;i<=p;i++)
dp[i]=(dp[i-]*i)%p;
}
LL pow_mod(LL a,LL n,LL p)
{
LL ans=;
while(n)
{
if(n&) ans=(ans*a)%p;
n=n>>;
a=(a*a)%p;
}
return ans;
}
LL C(LL a,LL b,LL p)
{
if(a<b) return ;
if(b>a-b) b=a-b;
LL sum1=dp[a];
LL sum2=(dp[b]*dp[a-b])%p;
sum1=(sum1*pow_mod(sum2,p-,p));
return sum1;
}
LL Lucas(LL n,LL m,LL p)
{
LL ans=;
while(n&&m&&ans)
{
ans=(ans*C(n%p,m%p,p))%p;
n=n/p;
m=m/p;
}
return ans;
}
int main()
{
int T;
LL n,m,p;
scanf("%d",&T);
while(T--)
{
scanf("%I64d%I64d%I64d",&n,&m,&p);
init(p);
if(n>m)swap(n,m);
LL ans= Lucas(n+m,m,p);
printf("%I64d\n",ans);
}
return ;
}

hdu 3037 Saving Beans的更多相关文章

  1. hdu 3037 Saving Beans(组合数学)

    hdu 3037 Saving Beans 题目大意:n个数,和不大于m的情况,结果模掉p,p保证为素数. 解题思路:隔板法,C(nn+m)多选的一块保证了n个数的和小于等于m.可是n,m非常大,所以 ...

  2. hdu 3037 Saving Beans Lucas定理

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  3. hdu 3037——Saving Beans

    Saving Beans Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

  4. Hdu 3037 Saving Beans(Lucus定理+乘法逆元)

    Saving Beans Time Limit: 3000 MS Memory Limit: 32768 K Problem Description Although winter is far aw ...

  5. HDU 3037 Saving Beans (Lucas法则)

    主题链接:pid=3037">http://acm.hdu.edu.cn/showproblem.php?pid=3037 推出公式为C(n + m, m) % p. 用Lucas定理 ...

  6. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  7. HDU 3037 Saving Beans(Lucas定理的直接应用)

    解题思路: 直接求C(n+m , m) % p , 由于n , m ,p都非常大,所以要用Lucas定理来解决大组合数取模的问题. #include <string.h> #include ...

  8. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  9. HDU 3073 Saving Beans

    Saving Beans Time Limit: 3000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...

随机推荐

  1. 转:NodeJS、NPM安装配置步骤

    1.windows下的NodeJS安装是比较方便的(v0.6.0版本之后,支持windows native),只需要登陆官网(http://nodejs.org/),便可以看到下载页面.  2.下载完 ...

  2. list和map的区别

    list和map的区别 list-->list是对象集合,允许对象重复 map-->map是键值对的集合,不允许key重复

  3. Java实现找出数组中重复次数最多的元素以及个数

    /**数组中元素重复最多的数 * @param array * @author shaobn * @param array */ public static void getMethod_4(int[ ...

  4. 夺命雷公狗jquery---4内容选择器

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. SqlServer 的提示符(Option/With等提示符)不是什么时候都可以用的

    我们在做SqlServer的查询调优的时候,经常会在语句末尾用到option(loop/merge/hash join)或在join语句前直接声明loop/merge/hash,来强制SqlServe ...

  6. linux设备驱动归纳总结(七):1.时间管理与内核延时【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-100005.html linux设备驱动归纳总结(七):1.时间管理与内核延时 xxxxxxxxxxx ...

  7. android log机制——输出log【转】

    转自:http://blog.csdn.net/tdstds/article/details/19084327 目录(?)[-] 在android Java code中输出log Logprintln ...

  8. 转:Spring AOP术语

    1.连接点(Joinpoint)       程序执行的某个特定位置:如类开始初始化前.类初始化后.类某个方法调用前.调用后.方法抛出异常后.这些代码中的特定点,称为“连接点”.Spring仅支持方法 ...

  9. Verilog HDL基础语法讲解之模块代码基本结构

    Verilog HDL基础语法讲解之模块代码基本结构   本章主要讲解Verilog基础语法的内容,文章以一个最简单的例子"二选一多路器"来引入一个最简单的Verilog设计文件的 ...

  10. bash正则表达式

    星号*: 匹配它前面的字符串或正则表达式任意次(包括0次). 比如:* 可能匹配的字符串有:... ...... 句号.: 匹配除换行符之外的任意一个字符. 比如:"112.",将 ...