/*===========================================================
wikioi
1688 求逆序对 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description
给定一个序列a1,a2,…,an,如果存在i<j并且ai>aj,那么我们称之为逆序对,求逆序对的数目.
数据范围:N<=105。Ai<=105。时间限制为1s。 输入描述 Input Description
第一行为n,表示序列长度,接下来的n行,第i+1行表示序列中的第i个数。
输出描述 Output Description
所有逆序对总数.
样例输入 Sample Input
4
3
2
3
2
样例输出 Sample Output
3 注解:
题目考察分治法。解决该题需要用到二路归并排序。
假如本题直接使用两重for循环来模拟,则最后肯定是会超时的。
模拟的Pascal代码如下:
ans:=0;
read(n);
for i:=1 to n do read(a[i]);
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then ans:=ans+1;
writeln(ans);
这个模拟算法是O(n^2)的算法,所以无法解决N<=10^5这样规模的问题。
其实从这个模拟的过程来看,终归是要把序列当中的所有数做两两比较。
联想到冒泡之类的排序也是要比较的。所以,随便找一个排序算法稍作修改,
应该就可以解决问题了。但是,冒泡、选择和直接插入排序都是O(n^2)算法。
这样的算法并未能提高程序的效率。相反,浪费脑细胞去修改算法。
排序算法里面的二路归并排序倒是不错的选择,因为它的时间复杂度是O(n*lg(n))。
=============================================================*/
 #include<stdio.h>

 int n,a[],t[];
long long ans=; void merge_sort(int A[],int l,int r,int T[])
{
if(l<r)
{
int m=l+((r-l)>>);
int x=l,y=m+,i=l;
merge_sort(A,l,m,T);
merge_sort(A,m+,r,T);
while(x<=m||y<=r)
{
if(y>r || (x<=m && A[x] <= A[y])) T[i++]=A[x++];
else {T[i++]=A[y++];ans+=(m-x+);}
}
for(i=l;i<=r;i++) A[i]=T[i];
}
} int main()
{ scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
merge_sort(a,,n,t);
printf("%lld\n",ans);
return ;
}

另一段代码:

 #include <stdio.h>

 int n,a[],t[];
long long count=; void merge_sort(int *a,int x,int y,int *t);//对a[]在[x,y) 下标范围的元素进行归并排序 int main(int argc, char *argv[])
{
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%d",&a[i]);
merge_sort(a,,n,t);
printf("%lld\n",count);
return ;
}
void merge_sort(int *a,int x,int y,int *t)//对a[]在[x,y) 下标范围的元素进行归并排序
{
if(y-x>)
{
int m=x+(y-x)/;
int p=x,q=m,i=x;
merge_sort(a,x,m,t);
merge_sort(a,m,y,t);
while(p<m||q<y)
{
if( q>=y || (p<m&&a[p]<=a[q]) ) t[i++]=a[p++];
else { t[i++]=a[q++]; count=count+m-p; }
}
for(i=x;i<y;i++) a[i]=t[i];
}
}

注意:在统计逆序对数目的时候,不要重复统计。

wikioi 1688 求逆序对的更多相关文章

  1. AC日记——codevs 1688 求逆序对

    1688 求逆序对  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 给定一个序列a1,a2,…, ...

  2. Codevs 1688 求逆序对(权值线段树)

    1688 求逆序对  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 给定一个序列a1,a2,…, ...

  3. Codevs 1688 求逆序对

     时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 给定一个序列a1,a2,…,an,如果存在i<j并且ai>aj,那么我 ...

  4. codevs1688 求逆序对(权值线段树)

    1688 求逆序对  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 给定一个序列a1,a2,…, ...

  5. HDU 3743 Frosh Week(归并排序求逆序对)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3743 题目意思就是给你一个长为n的序列,让你求逆序对.我用的是归并排序来求的.归并排序有一个合并的过程 ...

  6. POJ2299Ultra-QuickSort(归并排序 + 树状数组求逆序对)

    树状数组求逆序对   转载http://www.cnblogs.com/shenshuyang/archive/2012/07/14/2591859.html 转载: 树状数组,具体的说是 离散化+树 ...

  7. codevs1688 求逆序对

    题目描述 Description 给定一个序列a1,a2,…,an,如果存在i<j并且ai>aj,那么我们称之为逆序对,求逆序对的数目 数据范围:N<=105.Ai<=105. ...

  8. HDU 4911 http://acm.hdu.edu.cn/showproblem.php?pid=4911(线段树求逆序对)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4911 解题报告: 给出一个长度为n的序列,然后给出一个k,要你求最多做k次相邻的数字交换后,逆序数最少 ...

  9. SGU 180 Inversions(离散化 + 线段树求逆序对)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=180 解题报告:一个裸的求逆序对的题,离散化+线段树,也可以用离散化+树状数组.因为 ...

随机推荐

  1. Python的图形化界面

    导入easygui模块有很多种方法 , 这里只介绍一种简单使用的 . import easygui as g 将easygui 简称为g 然后开始调用她的函数就行. import easygui as ...

  2. ViewBag、ViewData和TempData的使用和区别

    在MVC3开始,视图数据可以通过ViewBag属性访问,在MVC2中则是使用ViewData. MVC3中保留了ViewData的使用. ViewBag 是动态类型(dynamic),ViewData ...

  3. Android布局居中的几种做法

    Android的布局文件中,如果想让一个组件(布局或View)居中显示在另一个布局(组件)中,可以由这么几种做法: android:layout_gravity android:gravity and ...

  4. CodeForces 414D (贪心)

    problem Mashmokh and Water Tanks 题目大意 给你一棵树,k升水,p块钱,进行一次游戏. 在游戏进行前,可以在任意个节点上放置1升水(总数不超过k) 游戏进行若干轮,每轮 ...

  5. mysql主从同步mysql slave_io_running:no的解决方案

    在主从同步的时候出现slave_io_running:no 问题,于是查看mysqld.log日志,发现时1042错误 解决方案: 编辑/etc/my.cnf,在:[mysqld]内添加一行:skip ...

  6. Tranparent/cutout/diffuse

    Shader "Tranparent/cutout/diffuse" { Properties {   //  _Color ("Main Color", Co ...

  7. iOS-NSThread使用

    NSThread: 优点:NSThread 比其他两个轻量级(Cocoa NSOperation.GCD) 缺点:需要自己管理线程的生命周期,线程同步.线程同步对数据的加锁会有一定的系统开销 Coco ...

  8. Threads Events QObjects

    Events and the event loop Being an event-driven toolkit, events and event delivery play a central ro ...

  9. 常用http请求状态码含义

    1**  ----临时响应 2**  ----成功响应 3**  ----重定向 4**  ----请求错误 5**  ----服务器错误 常用的几个如下: 200---服务器成功返回网页 301-- ...

  10. 13年7月memory point

    IOS/android美术资源压缩相关工具使用,shell编写; 美术资源地图压缩方案: IAP支付objc代码添加, iap cracker/iap free防破解方法, sever端增加php验证 ...