Networking
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 6432   Accepted: 3488

Description

You are assigned to design network connections between certain points in a wide area. You are given a set of points in the area, and a set of possible routes for the cables that may connect pairs of points. For each possible route between two points, you are given the length of the cable that is needed to connect the points over that route. Note that there may exist many possible routes between two given points. It is assumed that the given possible routes connect (directly or indirectly) each two points in the area. 
Your task is to design the network for the area, so that there is a connection (direct or indirect) between every two points (i.e., all the points are interconnected, but not necessarily by a direct cable), and that the total length of the used cable is minimal.

Input

The input file consists of a number of data sets. Each data set defines one required network. The first line of the set contains two integers: the first defines the number P of the given points, and the second the number R of given routes between the points. The following R lines define the given routes between the points, each giving three integer numbers: the first two numbers identify the points, and the third gives the length of the route. The numbers are separated with white spaces. A data set giving only one number P=0 denotes the end of the input. The data sets are separated with an empty line. 
The maximal number of points is 50. The maximal length of a given route is 100. The number of possible routes is unlimited. The nodes are identified with integers between 1 and P (inclusive). The routes between two points i and j may be given as i j or as j i. 

Output

For each data set, print one number on a separate line that gives the total length of the cable used for the entire designed network.

Sample Input

1 0

2 3
1 2 37
2 1 17
1 2 68 3 7
1 2 19
2 3 11
3 1 7
1 3 5
2 3 89
3 1 91
1 2 32 5 7
1 2 5
2 3 7
2 4 8
4 5 11
3 5 10
1 5 6
4 2 12 0

Sample Output

0
17
16
26

Source

这道题其实就是求mst,贴AC代码:


#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; const int MAXN=55;
const int MAXM=1e6;
int father[MAXN];
struct Edge
{
int u,v,w;
}edge[MAXM];
int tot;
void addedge(int u,int v,int w)
{
edge[tot].u=u;
edge[tot].v=v;
edge[tot++].w=w;
}
int find_set(int x)
{
if(father[x]==-1)
return x;
else
return father[x]=find_set(father[x]);
}
bool cmp(Edge x,Edge y)
{
return x.w<y.w;
}
int Kruskal(int n)
{
memset(father,-1,sizeof(father));
sort(edge,edge+tot,cmp);
int ans=0;
int num=0;
for(int i=0;i<tot;i++)
{
int u=edge[i].u;
int v=edge[i].v;
int w=edge[i].w;
int fa1=find_set(u);
int fa2=find_set(v);
if(fa1!=fa2)
{
ans+=w;
num++;
father[fa1]=fa2;
}
if(num==n-1)
break;
}
if(num<n-1)
return -1;
else
return ans;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m))
{
if(n==0)
break;
tot=0;
int u,v,w;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
u--;
v--;
addedge(u,v,w);
}
int ans=Kruskal(n);
printf("%d\n",ans);
}
return 0;
}

POJ_1287_mst的更多相关文章

随机推荐

  1. HDU-3853 LOOPS(概率DP求期望)

    题目大意:在nxm的方格中,从(1,1)走到(n,m).每次只能在原地不动.向右走一格.向下走一格,概率分别为p1(i,j),p2(i,j),p3(i,j).求行走次数的期望. 题目分析:状态转移方程 ...

  2. PHP内存消耗

    由于变量占用的空间不一样,所以其消耗的内存大小也不一样,在PHP中我们可以通过使用“memory_get_usage”来获取当前PHP消耗的内存.但是根据操作系统.PHP版本以及PHP的运行方式可能输 ...

  3. Android平台下的JNI开发

    JNI是Java Native Interface的缩写,通过JNI可以方便我们在Android平台上进行C/C++编程.要用JNI首先必须安装Android的NDK,配置好NDK环境之后就可以在Ec ...

  4. Linux-同步异步非阻塞阻塞的解析

    一.理解同步.异步.阻塞.非阻塞 出场人物:老张,水壶两把(普通水壶,简称水壶:会响的水壶,简称响水壶). 1 老张把水壶放到火上,立等水开.(同步阻塞) 老张觉得自己有点傻. 2 老张把水壶放到火上 ...

  5. C#配置升级

    void ConvertProject() { List<BaseProjectConverter> convertors = new List<BaseProjectConvert ...

  6. Hadoop 安装记录

    第一步:打开/etc 下面的 profile文件,在其中加入环境变量设置的代码 done JAVA_HOME=/home/hadoop/installer/jdk7u65 PATH=$JAVA_HOM ...

  7. OSI安全体系结构

    建立七层模型主要是为解决异种网络互连时所遇到的兼容性问题.它的最大优点是将服务.接口和协议这三个概念明确地区分开来;也使网络的不同功能模块分担起 不同的职责.也就是说初衷在于解决兼容性,但当网络发展到 ...

  8. nodejs 任务调度使用

    使用的模块 node-schedule的使用 例子: 1:确定时间 var schedule = require("node-schedule");console.log(&quo ...

  9. python escape sequences

    转义字符 描述 \(在行尾时) 续行符 \\ 反斜杠符号 \' 单引号 \" 双引号 \a 响铃 \b 退格(Backspace) \e 转义 \000 空 \n 换行 \v 纵向制表符 \ ...

  10. Oracle对索引列同时使用多个聚合函数的性能问题

    Oracle某一数据表tkk715(数据量在一千万左右),对一个索引字段做获取最大值与最小值的聚合函数操作,响应时间较长(超过3秒): 将SQL改写为分别取最大.最小的聚合值,IO和响应时间显著下降到 ...