131. 132. Palindrome Partitioning *HARD* -- 分割回文字符串
131. Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab",
Return
[
["aa","b"],
["a","a","b"]
]
class Solution {
public:
bool isPalindrome(string s)
{
int l = s.length(), left, right;
for(left = , right = l-; left < right; left++, right--)
{
if(s[left] != s[right])
return false;
}
return true;
}
void partitionHelper(vector<vector<string>> &ans, string &s, int start, vector<string> &vec)
{
int l = s.length(), i;
if(start == l)
{
ans.push_back(vec);
return;
}
for(i = start; i < l; i++)
{
string sub = s.substr(start, i-start+);
if(isPalindrome(sub))
{
vec.push_back(sub);
partitionHelper(ans, s, i+, vec);
vec.pop_back();
}
}
}
vector<vector<string>> partition(string s) {
vector<vector<string>> ans;
vector<string> vec;
partitionHelper(ans, s, , vec);
return ans;
}
};
132. Palindrome Partitioning II
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab",
Return 1 since the palindrome partitioning ["aa","b"] could be produced using 1 cut.
class Solution {
public:
int minCut(string s) {
int l = s.length(), i, j;
if(l <= )
return ;
//判断是否为回文字符串
vector<vector<bool>> isPal(l, vector<bool>(l, false));
for(i = l-; i >= ; i--) //HERE
{
isPal[i][i] = true;
for(j = i+; j < l; j++)
{
if(s[i] == s[j] && (j == i+ || isPal[i+][j-]))
isPal[i][j] = true;
}
}
vector<int> num(l);
num[] = ;
for(i = ; i < l; i++)
{
if(isPal[][i])
{
num[i] = ;
continue;
}
num[i] = i;
for(j = ; j <= i; j++)
{
if(isPal[j][i] && num[j-]+ < num[i])
num[i] = num[j-] + ;
}
}
return num[l-];
}
};
(1)
//construct the pailndrome checking matrix
// 1) matrix[i][j] = true; if (i==j) -- only one char
// 2) matrix[i][j] = true; if (i==j+1) && s[i]==s[j] -- only two chars
// 3) matrix[i][j] = matrix[i+1][j-1]; if s[i]==s[j] -- more than two chars
注意:
在构造矩阵时,要自下往上,否则一些位置会用到的值还没有填写。
(2)
/*
* Dynamic Programming
* -------------------
*
* Define res[i] = the minimum cut from 0 to i in the string.
* The result eventually is res[s.size()-1].
* We know res[0]=0. Next we are looking for the optimal solution function f.
*
* For example, let s = "leet".
*
* f(0) = 0; // minimum cut of str[0:0]="l", which is a palindrome, so not cut is needed.
* f(1) = 1; // str[0:1]="le" How to get 1?
* f(1) might be: (1) f(0)+1=1, the minimum cut before plus the current char.
* (2) 0, if str[0:1] is a palindrome (here "le" is not )
* f(2) = 1; // str[0:2] = "lee" How to get 2?
* f(2) might be: (1) f(1) + 1=2
* (2) 0, if str[0:2] is a palindrome (here "lee" is not)
* (3) f(0) + 1, if str[1:2] is a palindrome, yes!
* f(3) = 2; // str[0:3] = "leet" How to get 2?
* f(3) might be: (1) f(2) + 1=29
* (2) 0, if str[0:3] is a palindrome (here "leet" is not)
* (3) f(0) + 1, if str[1:3] is a palindrome (here "eet" is not)
* (4) f(1) + 1, if str[2:e] is a palindrome (here "et" is not)
* OK, output f(3) =2 as the result.
*
* So, the optimal function is:
*
* f(i) = min [ f(j)+1, j=0..i-1 and str[j:i] is palindrome
* 0, if str[0,i] is palindrome ]
*
* The above algorithm works well for the smaller test cases, however for the big cases, it still cannot pass.
* Why? The way we test the palindrome is time-consuming.
*
* Also using the similar DP idea, we can construct the look-up table before the main part above,
* so that the palindrome testing becomes the looking up operation. The way we construct the table is also the idea of DP.
*
* e.g. mp[i][j]=true if str[i:j] is palindrome.
* mp[i][i]=true;
* mp[i][j] = true if str[i]==str[j] and (mp[i+1][j-1]==true or j-i<2 ) j-i<2 ensures the array boundary.
*/
131. 132. Palindrome Partitioning *HARD* -- 分割回文字符串的更多相关文章
- 132 Palindrome Partitioning II 分割回文串 II
给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串.返回 s 符合要求的的最少分割次数.例如,给出 s = "aab",返回 1 因为进行一次分割可以将字符串 s 分 ...
- leetcode@ [131/132] Palindrome Partitioning & Palindrome Partitioning II
https://leetcode.com/problems/palindrome-partitioning/ Given a string s, partition s such that every ...
- 19. Palindrome Partitioning && Palindrome Partitioning II (回文分割)
Palindrome Partitioning Given a string s, partition s such that every substring of the partition is ...
- [LeetCode] Palindrome Partitioning II 拆分回文串之二
Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...
- LeetCode 131. 分割回文串(Palindrome Partitioning)
131. 分割回文串 131. Palindrome Partitioning 题目描述 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. LeetC ...
- Leetcode之回溯法专题-131. 分割回文串(Palindrome Partitioning)
Leetcode之回溯法专题-131. 分割回文串(Palindrome Partitioning) 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. ...
- 分割回文串 · Palindrome Partitioning
[抄题]: 给定一个字符串s,将s分割成一些子串,使每个子串都是回文串. 返回s所有可能的回文串分割方案. 给出 s = "aab",返回 [ ["aa", & ...
- lintcode:Palindrome Partitioning 分割回文串
题目: 分割回文串 给定一个字符串s,将s分割成一些子串,使每个子串都是回文串. 返回s所有可能的回文串分割方案. 样例 给出 s = "aab",返回 [ ["aa&q ...
- leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II
131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...
随机推荐
- linux远程XP
众所周知XP下有"远程桌面连接"用来远程登录桌面,设置也非常简单. 那有没有什么办法在linux下远程登录到XP呢?有.用rdesktop这个linux下的软件就能实现. 发现新立 ...
- zoj 1081 判断点在多边形内
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=81Points Within Time Limit: 2 Second ...
- hdu 3018 Ant Trip 欧拉回路+并查集
Ant Trip Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem ...
- s表达式和json表达式
s表达式 + 1 2 3普通表达式 1+2+3json表达式{ +:[1, 2, 3]}优点,一个运算符,无限个参数 s表达式 * (+ 1 2) 3普通表达式 1+(2*3)json表达式{ *:[ ...
- 简单的poi导出excel文件
/**** 创建excel文件**/ 1 import java.io.FileOutputStream; import java.io.IOException; import java.util.C ...
- JAVA中Response的几种用法(设定时间调整到指定页面 ....... )
<%@ page language="java" import="java.util.*" pageEncoding="gbk"%&g ...
- RARP
ARP的工作原理如下:1. 首先,每台主机都会在自己的ARP缓冲区 (ARP Cache)中建立一个 ARP列表,以表示IP地址和MAC地址的对应关系.2. 当源主机需要将一个数据包要发送到目的主机时 ...
- openstack 网卡
桥接基本原理: 物理网卡eth0 br0(桥) tap0,tap1(tap是给vm使用的接口)
- mac下pmset的使用方法
在终端输入:pmset -g custom 这个命令可以显示系统所有的电源设置 lidwake: 当屏幕掀开的时候唤醒Mac,1是开启 0是关闭autopoweroff: 如果Mac处于睡眠状 ...
- create table xxx as select 与 create table xxx like
create table xxx ) | NO | PRI | NULL | auto_increment | | Name | varchar() | NO | ...