305. Number of Islands II
题目:
A 2d grid map of m
rows and n
columns is initially filled with water. We may perform an addLand operation which turns the water at position (row, col) into a land. Given a list of positions to operate, count the number of islands after each addLand operation. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.
Example:
Given m = 3, n = 3
, positions = [[0,0], [0,1], [1,2], [2,1]]
.
Initially, the 2d grid grid
is filled with water. (Assume 0 represents water and 1 represents land).
0 0 0
0 0 0
0 0 0
Operation #1: addLand(0, 0) turns the water at grid[0][0] into a land.
1 0 0
0 0 0 Number of islands = 1
0 0 0
Operation #2: addLand(0, 1) turns the water at grid[0][1] into a land.
1 1 0
0 0 0 Number of islands = 1
0 0 0
Operation #3: addLand(1, 2) turns the water at grid[1][2] into a land.
1 1 0
0 0 1 Number of islands = 2
0 0 0
Operation #4: addLand(2, 1) turns the water at grid[2][1] into a land.
1 1 0
0 0 1 Number of islands = 3
0 1 0
We return the result as an array: [1, 1, 2, 3]
Challenge:
Can you do it in time complexity O(k log mn), where k is the length of the positions
?
链接: http://leetcode.com/problems/number-of-islands-ii/
题解:
又是一道Union Find的经典题。这道题代码主要参考了yavinci大神。风格还是princeton Sedgewick的那一套。这里我们可以把二维的Union-Find映射为一维的Union Find。使用Quick-Union就可以完成。但这样的话Time Complexity是O(kmn)。 想要达到O(klogmn)的话可能还需要使用Weighted-Quick Union配合path compression。二刷一定要实现。
Time Complexity - O(mn * k), Space Complexity - O(mn)
public class Solution {
int[][] directions = {{0, 1}, {1, 0}, {-1, 0}, {0, -1}}; public List<Integer> numIslands2(int m, int n, int[][] positions) {
List<Integer> res = new ArrayList<>();
if(m < 0 || n < 0 || positions == null) {
return res;
}
int[] id = new int[m * n]; // union find array
int count = 0;
Arrays.fill(id, -1); for(int i = 0; i < positions.length; i++) {
int index = n * positions[i][0] + positions[i][1];
if(id[index] != -1) {
res.add(count);
continue;
} id[index] = index;
count++; for(int[] direction : directions) {
int x = positions[i][0] + direction[0];
int y = positions[i][1] + direction[1];
int neighborIndex = n * x + y;
if(x < 0 || x >= m || y < 0 || y >= n || id[neighborIndex] == -1) {
continue;
}
if(!connected(id, index, neighborIndex)) {
union(id, neighborIndex, index);
count--;
}
} res.add(count);
}
return res;
} private boolean connected(int[] id, int p, int q) {
return id[p] == id[q];
} private void union(int[] id, int p, int q) {
int pid = id[p];
int qid = id[q];
for(int i = 0; i < id.length; i++) {
if(id[i] == pid) {
id[i] = qid;
}
}
}
}
二刷:
加入了Path compression以及Weight, 速度快了不少。
Time Complexity - (k * logmn) Space Complexity - O(mn), 这里k是positions的长度
public class Solution {
private int[] id;
private int[] sz;
private int[][] directions = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
public List<Integer> numIslands2(int m, int n, int[][] positions) {
List<Integer> res = new ArrayList<>();
if (positions == null || positions.length == 0 || m < 0 || n < 0) {
return res;
}
id = new int[m * n];
sz = new int[m * n];
for (int i = 0; i < id.length; i++) {
id[i] = i;
} int count = 0;
for (int[] position : positions) {
int p = position[0] * n + position[1];
sz[p]++;
count++;
for (int[] direction : directions) {
int newRow = position[0] + direction[0];
int newCol = position[1] + direction[1];
if (newRow < 0 || newCol < 0 || newRow > m - 1 || newCol > n - 1) {
continue;
}
int q = newRow * n + newCol;
if (sz[q] > 0) {
if (isConnected(p, q)) {
continue;
} else {
union(p, q);
count--;
}
}
}
res.add(count);
}
return res;
} private int getRoot(int p) {
while (p != id[p]) {
id[p] = id[id[p]];
p = id[p];
}
return p;
} private boolean isConnected(int p, int q) {
return getRoot(p) == getRoot(q);
} private void union(int p, int q) {
int rootP = getRoot(p);
int rootQ = getRoot(q);
if (rootP == rootQ) {
return;
} else {
if (sz[p] < sz[q]) {
id[rootP] = rootQ;
sz[q] += sz[p];
} else {
id[rootQ] = rootP;
sz[p] += sz[q];
}
}
}
}
Reference:
https://leetcode.com/discuss/69392/python-clear-solution-unionfind-class-weighting-compression
https://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf
https://leetcode.com/discuss/69397/my-simple-union-find-solution
https://leetcode.com/discuss/69572/easiest-15ms-java-solution-written-mins-with-explanations
https://leetcode.com/discuss/69585/union-find-java-implements
https://leetcode.com/discuss/69374/solution-using-union-find-path-compression-weight-balancing
https://leetcode.com/discuss/70392/java-union-find-solution
https://leetcode.com/discuss/72435/share-my-java-union-find-solution
https://leetcode.com/discuss/69513/simple-python-not-normal-union-find
http://algs4.cs.princeton.edu/15uf/
305. Number of Islands II的更多相关文章
- [LeetCode] 305. Number of Islands II 岛屿的数量之二
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- LeetCode 305. Number of Islands II
原题链接在这里:https://leetcode.com/problems/number-of-islands-ii/ 题目: A 2d grid map of m rows and n column ...
- [LeetCode] 305. Number of Islands II 岛屿的数量 II
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- [LeetCode] Number of Islands II 岛屿的数量之二
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- [LeetCode] Number of Islands II
Problem Description: A 2d grid map of m rows and n columns is initially filled with water. We may pe ...
- Leetcode: Number of Islands II && Summary of Union Find
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- [Swift]LeetCode305. 岛屿的个数 II $ Number of Islands II
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- LeetCode – Number of Islands II
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- LintCode "Number of Islands II"
A typical Union-Find one. I'm using a kinda Union-Find solution here. Some boiler-plate code - yeah ...
随机推荐
- OpenCV检测人脸实例代码
下面是使用OpenCV通过在硬盘中读入图像来对其进行Haar人脸检测的代码. //包含头文件 #include <opencv2/core/core.hpp> #include " ...
- 搭建SpringMVC+MyBatis开发框架六
建立Springmvc包结构 1.看看我们在springmvc.xml中曾经配置过扫描net.quickcodes这个包下面的所有java文件:  现在我们就在"src/main/java ...
- GCC常用命令行一览表
GCC常用命令行一览表 这些常用的 gcc/g++ 命令行参数,你都知道么?1. gcc -E source_file.c-E,只执行到预编译.直接输出预编译结果. 2. gcc -S source_ ...
- android 通过工具抓包
工具: 1.tcpdump :http://www.strazzere.com/android/tcpdump 2.wireshark:http://pan.baidu.com/s/1geooiav ...
- Nginx问题总汇
http://blog.csdn.net/llnara/article/details/8691049 关键字: open var run nginx pid failed 产生原因:添加模块,重编译 ...
- Java多线程——<七>多线程的异常捕捉
一.概述 为什么要单独讲多线程的异常捕捉呢?先看个例子: public class ThreadException implements Runnable{ @Override public void ...
- 土地购买 usaco 斜率优化
看这道题的时候,感觉很难,因为数据范围比较大,很难dp: 后来想到了[书柜的尺寸]这道题,也是一道dp,曾经看了那道题的题解而深有启发: 这道题每组的付费只与这一组长宽的最大值有关,也就是说要分组,一 ...
- Phyre LCUE with YEBIS cause issues about GS
when LCUE enabled in phyreEngine when Yebis integrated and render there are two mainloopdraws in one ...
- 4-Highcharts 3D图之3D普通饼图
<!DOCTYPE> <html lang='en'> <head> <title>4-Highcharts 3D图之3D普通饼图</title& ...
- web服务器与应用服务器
WEB服务器与应用服务器的区别: 1.WEB服务器: 理解WEB服务器,首先你要理解什么是WEB?WEB你可以简单理解为你所看到的HTML页面就是WEB的数据元素,处理这些数据元素的应用软件就叫WEB ...