上文中,“到时间n为止进入任意一个特定的状态集合”应理解为“在时间n及之前进入的都算”。

只要进入了该状态集合,之后是否离开已经不重要了。这个可类比于“先赢若干局”的赌徒问题:即使在赢得若干局后继续赌满至最大可能局数,不影响输赢概率计算。进入状态集合就类比于已提前赢得赌局。

互通(和状态类?)的判断可以通过状态转移图看出来。什么是状态转移图?恩,就是类似状态机的状态转移图。

上文中“恰好在状态i停留n个时间周期”是指进入状态i的次数为n(包括开始的那次),而不是“连续停留n个时间周期”。由于从状态i到再次进入状态i的概率为fi(不用去管中间状态),因此刚好进入n次(包括开始那次是n次,除去开始那次的“重新”进入的次数是n-1次)的概率为fi(n-1)(1-fi)。

两个状态的类要么相同,要么不相交。意思是,两个状态要么属于相同的类,要么分属不同的类。一个状态不可能同时属于两个类。

关于常返态的定义需要注意的是,它要求的是从状态i出发且最终再进入状态i的概率为1。所以,转移概率矩阵中是可以存在两个或以上常返态类的,这两个常返态类不但非互通,甚至完全“隔绝”。

CK方程的更多相关文章

  1. 【彩票】彩票预测算法(一):离散型马尔可夫链模型C#实现

    前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱 ...

  2. 【年终分享】彩票数据预测算法(一):离散型马尔可夫链模型实现【附C#代码】

    原文:[年终分享]彩票数据预测算法(一):离散型马尔可夫链模型实现[附C#代码] 前言:彩票是一个坑,千万不要往里面跳.任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已. ...

  3. 2321. 【NOIP普及组T1】方程

    2321. [NOIP普及组T1]方程 时间限制: 1000 ms  空间限制: 262144 KB 题目描述

  4. 【统计学习】SVM之超平面方程来源

    摘要 本文主要说明SVM中用到的超平面方程是怎么来的,以及各个符号的物理意义,怎么算空间上某点到该平面的距离. 正文 < 统计学习方法>一书给出如下说明: 首先说明我对超平面的理解: 在三 ...

  5. [BZOJ3751][NOIP2014] 解方程

    Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数).   Input 第一行包含2个整数n.m,每两个 ...

  6. vijos P1915 解方程 加强版

    背景 B酱为NOIP 2014出了一道有趣的题目, 可是在NOIP现场, B酱发现数据规模给错了, 他很伤心, 哭得很可怜..... 为了安慰可怜的B酱, vijos刻意挂出来了真实的题目! 描述 已 ...

  7. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

  8. SPSS数据分析—广义估计方程

    广义线性模型虽然很大程度上拓展了线性模型的应用范围,但是其还是有一些限制条件的,比如因变量要求独立,如果碰到重复测 量数据这种因变量不独立的情况,广义线性模型就不再适用了,此时我们需要使用的是广义估计 ...

  9. Picard 法求方程根

    要点: 首先对于任何方程 :f(x)=0 ,可以转换成 f(x)+x-x => f(x)+x=x; 取g(x)=f(x)+x;  那么 新方程g(x)=x 的解即是 f(x)=0的解,即g(x) ...

随机推荐

  1. Flume NG 简介及配置实战

    Flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用.Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 clo ...

  2. ajax 轮循

    使用 AJAX 进行异步加载轮询操作.简单代码如下: <script> // 执行ajax轮循操作 function polling(){ var xmlhttp; // 判断浏览器--创 ...

  3. 101. Symmetric Tree

    Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...

  4. js部分---表单验证;(含正则表达式)

    1.非空验证 <div>用户名:<input id="yhm" type="text" name="yhm" />& ...

  5. JavaWeb学习记录(一)——response响应头之缓存设置与下载功能的实现

    一.HTTP中常用响应头 Location: http://www.it315.org/index.jsp Server:apache tomcat Content-Encoding: gzip Co ...

  6. 局域网络ping不通

    描述:今天和老崔.老周去公司的新办公地点//相比临时的,十分高大上.当我们把两台台式电脑A.B装好了,网络设置也陪好了,确认能够上网,再装打印机的时候,发现搜索不到打印机的ip(打印机也是有自己的IP ...

  7. IOS中如果使用RGB实现背景色

    在开发的过程中.我们往往会碰到图片很多的情况.这时候我们的程序打包就会变得很大.一些纯色的图片可以用RGB来实现.这样可以减少内存的占用MAC本中有数码测色计这个功能.通过这个我们可以获得图片的RGB ...

  8. 越狱Season 1-Episode 5: English, Fitz or Percy

    Season 1, Episode 5: English, Fitz or Percy -Pope: I assume this is about your transfer request for ...

  9. Mac OS实用技巧

    →常用快捷键Win+Space        Spotlight查找Win+↑        平铺所有窗口Win+↓        平铺当前焦点应用的所有窗口Win+←/→        桌面之间切换 ...

  10. 【NOI2015】软件包管理器

    NOI难得的水题,话说还是T2诶……又学到了线段树的一种新的魔性使用 看sxysxy大神的代码才写出来的,sxysxy_orz 原题: Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包 ...