Counting trailing 0s of n! It is not very hard to figure out how to count it - simply count how many 5s. Since even numbers are always more than 5s, we don't have to consider even numbers.

But counting 5, is tricky. Naive method is quite slow - I got 12+s for 1000000000. And after reading below article, I got 0.04s. The former counts individually, duplicated; but the latter counts smart:
http://en.wikipedia.org/wiki/Trailing_zeros#Factorial

#include <iostream>
#include <ctime>
using namespace std; int main()
{
int cnt; cin >> cnt;
if(cnt == ) return ; while(cnt --)
{
unsigned long long n; cin >> n;
unsigned cnt = ; for (int d = ; d <= n; d *= ) {
cnt += n / d;
}
cout << cnt << endl;
}
return ;
}

SPOJ #11 Factorial的更多相关文章

  1. 高性能javascript学习笔记系列(4) -算法和流程控制

    参考高性能javascript for in 循环  使用它可以遍历对象的属性名,但是每次的操作都会搜索实例或者原型的属性 导致使用for in 进行遍历会产生更多的开销 书中提到不要使用for in ...

  2. 地区sql

    /*Navicat MySQL Data Transfer Source Server : localhostSource Server Version : 50136Source Host : lo ...

  3. SPOJ:Divisors of factorial (hard) (唯一分解&分块优化)

    Factorial numbers are getting big very soon, you'll have to compute the number of divisors of such h ...

  4. 2018.11.24 spoj New Distinct Substrings(后缀数组)

    传送门 双倍经验(弱化版本) 考虑求出来heightheightheight数组之后用增量法. 也就是考虑每增加一个heightheightheight对答案产生的贡献. 算出来是∑∣S∣−heigh ...

  5. 2018.11.18 spoj Triple Sums(容斥原理+fft)

    传送门 这次fftfftfft乱搞居然没有被卡常? 题目简述:给你nnn个数,每三个数ai,aj,ak(i<j<k)a_i,a_j,a_k(i<j<k)ai​,aj​,ak​( ...

  6. BZOJ 2588: Spoj 10628. Count on a tree [树上主席树]

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 5217  Solved: 1233 ...

  7. [codeforces 516]A. Drazil and Factorial

    [codeforces 516]A. Drazil and Factorial 试题描述 Drazil is playing a math game with Varda. Let's define  ...

  8. SPOJ #440. The Turtle´s Shortest Path

    Coding a Dijkstra is not hard. %70 of my time spent on tackling TLE, as my last post. Dijkstra works ...

  9. SPOJ #2 Prime Generator

    My first idea was Sieve of Eratosthenes, too. But obviously my coding was not optimal and it exceede ...

随机推荐

  1. Link Aggregation and LACP with Open vSwitch

    In this post, I’m going to show you how to use link aggregation (via the Link Aggregation Control Pr ...

  2. tcpdump抓包规则命令大全

    下面的例子全是以抓取eth0接口为例,如果不加”-i eth0”是表示抓取所有的接口包括lo. 1.抓取包含10.10.10.122的数据包 # tcpdump -i eth0 -vnn host 1 ...

  3. 解决f.lux总是弹框定位

    解决f.lux总是弹框定位,直接导入成功定位的注册表文件即可. 以下保存为f.lux.reg 双击导入即可. Windows Registry Editor Version 5.00 [HKEY_CU ...

  4. CentOS云服务器数据盘分区和格式化

    1. 查看数据盘信息 登录CentOS云服务器后,可以使用“fdisk -l”命令查看数据盘相关信息. 使用“df –h”命令,无法看到未分区和格式化的数据盘,只能看到已挂载的. [root@VM_7 ...

  5. ubuntu Virtualbox菜单栏不见

    ubuntu 装了Virtualbox 后,不知道怎么操作的导致顶部菜单栏不见啦, 网上查了下,我们看到开启/关闭 Scale Mode的快捷键都是 Ctrl C ,注意Ctrl是右边的那个不是左边那 ...

  6. Java基础类型与其二进制表示

    Java中的基础类型有:byte.short.int.long.float.double.char和boolean. 它们可被分为四种类型,整型.浮点型.char型和boolean型. 整型:byte ...

  7. LA 3644 易爆物 并查集

    题目链接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show ...

  8. iframe与frameset(转载)

    frameset 在一个页面中设置一个或多个框架 不能嵌套在body标签里 frameset        它称为框架标记,是用来告知HTML文件是框架模式,并且设定可视窗口怎么分割 fram     ...

  9. Linux网络管理概述

    概述:计算机基础知识.网络基础知识其实是所有的程序员所必须的,甚至已经不仅仅是程序员的专利,而是每一个人都应该掌握的计算机知识. 主要内容: 一.网络基础 二.Linux网络配置 三.Linux网络命 ...

  10. 穿越泥地(mud) (BFS)

    问题 C: 穿越泥地(mud) 时间限制: 1 Sec  内存限制: 128 MB提交: 16  解决: 10[提交][状态][讨论版] 题目描述 清早6:00,FJ就离开了他的屋子,开始了他的例行工 ...