K均值聚类(Kmeans)
Sigma = [1, 0; 0, 1];
mu1 = [1, -1];
x1 = mvnrnd(mu1, Sigma, 200);
mu2 = [5.5, -4.5];
x2 = mvnrnd(mu2, Sigma, 200);
mu3 = [1, 4];
x3 = mvnrnd(mu3, Sigma, 200);
mu4 = [6, 4.5];
x4 = mvnrnd(mu4, Sigma, 200);
mu5 = [9, 0.0];
x5 = mvnrnd(mu5, Sigma, 200);
% obtain the 1000 data points to be clustered
X = [x1; x2; x3; x4; x5];
% Show the data point
plot(x1(:,1), x1(:,2), 'r.'); hold on;
plot(x2(:,1), x2(:,2), 'b.');
plot(x3(:,1), x3(:,2), 'k.');
plot(x4(:,1), x4(:,2), 'g.');
plot(x5(:,1), x5(:,2), 'm.');
save myX %将X存储到文件中,在其他文件中load就可以了
结果如下:
% 初始聚类中心
mu0=[X(,:); X(,:);X(,:);X(,:);X(,:)];
mu1=zeros(,c);
lable=zeros(r,);
% first cluster
dist=zeros(,);
for k=:r
for n=:
dist(n)=norm(X(k,:)-mu0(n,:));
end
lable(k)=find(dist==min(dist));
end % X1=[lable X];
sum=zeros(,);
count=zeros(,); % 第一次聚类
for n=:
for k=:r
if lable(k)==n
sum(n,:)=sum(n,:)+X(k,:);
count(n)=count(n)+;
end
end
mu1(n,:)=sum(n,:)/count(n);
end % square error
e=zeros(,);
esum=;
for n=:
for k=:r
if lable(k)==n
e(n,:)=e(n,:)+norm(X(k,:)-mu1(n,:));
end
end
esum=esum+e(n,:);
end % ***************** start Iteration ************** countNotX=;% 到达一定值后,停止迭代
s=;
count1=zeros(,);
while true
s=s+;
%random choose X to update
ran=round(+*rand());%总共1000个样本
Xrand=X(ran,:);
rou=zeros(,);
rouMin=inf;
newClassLable=;
if count(lable(ran))~=
for n=:
if lable(ran)==n
rou(n)=norm(Xrand-mu1(n,:))*count(n)/(count(n)-);
else
rou(n)=norm(Xrand-mu1(n,:))*count(n)/(count(n)+);
end
if rou(n)<=rouMin;
rouMin=rou(n);
newClassLable=n;
end
end
if rouMin<rou(lable(ran))
countNotX=;
% new mu 这里用课件中的公式,不知道哪里错了,总是不行,就用最蠢的办法了
for n=:
for k=:r
if lable(k)==n
sum(n,:)=sum(n,:)+X(k,:);
count1(n)=count1(n)+;
end
end
mu1(n,:)=sum(n,:)/count1(n);
end
% new count
count(lable(ran))=count(lable(ran))-;
count(newClassLable)=count(newClassLable)+;
% new esum
e(lable(ran),:)=e(lable(ran),:)-rou(lable(ran));
e(newClassLable,:)=e(newClassLable,:)+rouMin;
esum=esum+rouMin-rou(lable(ran));
lable(ran)=newClassLable ;
else
% disp('No')
countNotX= countNotX+;
if countNotX==
%when J is not changed for times,reckon OK
break
end
end
end
end
K均值聚类(Kmeans)的更多相关文章
- 【转】算法杂货铺——k均值聚类(K-means)
k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...
- 第十篇:K均值聚类(KMeans)
前言 本文讲解如何使用R语言进行 KMeans 均值聚类分析,并以一个关于人口出生率死亡率的实例演示具体分析步骤. 聚类分析总体流程 1. 载入并了解数据集:2. 调用聚类函数进行聚类:3. 查看聚类 ...
- (ZT)算法杂货铺——k均值聚类(K-means)
https://www.cnblogs.com/leoo2sk/category/273456.html 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先 ...
- 机器学习之路:python k均值聚类 KMeans 手写数字
python3 学习使用api 使用了网上的数据集,我把他下载到了本地 可以到我的git中下载数据集: https://github.com/linyi0604/MachineLearning 代码: ...
- 吴裕雄 python 机器学习——K均值聚类KMeans模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- K均值聚类
聚类(cluster)与分类的不同之处在于, 分类算法训练过程中样本所属的分类是已知的属监督学习. 而聚类算法不需要带有分类的训练数据,而是根据样本特征的相似性将其分为几类,又称为无监督分类. K均值 ...
- 机器学习实战5:k-means聚类:二分k均值聚类+地理位置聚簇实例
k-均值聚类是非监督学习的一种,输入必须指定聚簇中心个数k.k均值是基于相似度的聚类,为没有标签的一簇实例分为一类. 一 经典的k-均值聚类 思路: 1 随机创建k个质心(k必须指定,二维的很容易确定 ...
- Python实现kMeans(k均值聚类)
Python实现kMeans(k均值聚类) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=> ...
- 5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章 ...
- 机器学习理论与实战(十)K均值聚类和二分K均值聚类
接下来就要说下无监督机器学习方法,所谓无监督机器学习前面也说过,就是没有标签的情况,对样本数据进行聚类分析.关联性分析等.主要包括K均值聚类(K-means clustering)和关联分析,这两大类 ...
随机推荐
- C#窗体四边框阴影效果的实现
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- java写的web服务器
经常用Tomcat,不知道的以为Tomcat很牛,其实Tomcat就是用java写的,Tomcat对jsp的支持做的很好,那么今天我们用java来写一个web服务器 //首先得到一个server, S ...
- shell脚本之lnmp的搭建
!/bin/bash #this script is source packages installed lnmp .xmal yum -y install wget #"========= ...
- Intent官方教程(6)常见Intent示例,启动日历,时钟,镜头等。
guide/components/intents-common.html 包含:Alarm Clock Calendar Camera Contacts/People App Email File S ...
- Duilib将UI资源文件打包到exe教程
转载:http://www.voidcn.com/blog/w839687571/article/p-6001921.html 转载:http://www.voidcn.com/blog/x35698 ...
- 如何通过Button获取UITableViewCell
发现一个奇怪的问题: 手机(ios7) 2015-06-17 15:11:29.323 ***[1412:60b] [btn superview] = UITableViewCellContent ...
- Failed to run the WC DB work queue associated with 错误的解决
转载自 http://blog.csdn.net/alan00000/article/details/44084455 svn checkout 代码是出现如标题的错误,提示我clean up ,cl ...
- winfrom增删改查
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- Cheatsheet: 2014 08.01 ~ 08.31
Web Slow Server? This is the Flow Chart You're Looking For A Strolll Through Node: Introduction .NET ...
- [原创] 使用LP Wizard 10.5 制作 Allegro PCB封装
本文只讲述使用 Calculator 和 Wizard 功能制作封装,通常学会使用这种方法,通用的标准封装就都可以生成了.下面以一个简单的SOIC-8封装的芯片来说明软件使用方法. 第一步,查找相关d ...